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1 Introduction
Reinforcement learning (RL) is a subfield of machine learning that specifically addresses the
development of algorithms and techniques for training intelligent agents to make sequential decisions.
It draws inspiration from the concept of learning through interactions with an environment, where
the agent receives feedback in the form of rewards or punishments based on its actions. By employing
trial-and-error learning, reinforcement learning empowers agents to acquire optimal strategies that
maximize rewards, thus finding utility in various domains such as robotics, game playing, and
resource management. Nonetheless, conventional RL approaches often neglect the crucial aspect of
risk, focusing solely on maximizing expected rewards. This disregard for risk can result in suboptimal
decisions in real-world applications where risk-sensitive behavior is of utmost importance.

In recent years, there has been a growing recognition of the need to incorporate risk considerations
into RL algorithms. Risk-sensitive reinforcement learning (RSRL) aims to address this gap by
enabling agents to make decisions that account for the potential consequences and uncertainties
associated with their actions. By explicitly considering risk, intelligent agents can navigate uncertain
and risky environments more effectively, leading to improved performance and robust decision-
making.

In the context of agriculture and forest management, our application focus in this study, RSRL
can play a vital role in enabling farmers and agricultural systems to make more informed and
risk-aware decisions. Agriculture is inherently subject to numerous sources of risk, including weather
variability, pests and diseases, market fluctuations, and resource constraints. The consequences of
poor decision-making in agriculture can have significant impacts on crop yields, livestock health,
financial stability, and even food security at larger scales. By accounting for risk, farmers can make
more robust and adaptive decisions that align with their risk tolerance and long-term sustainability
objectives. By quantifying and optimizing for both immediate rewards and long-term risks, RSRL
algorithms can guide farmers towards more sustainable and resilient agricultural practices.

The notion of risk in sequential decision-making can be studied under multiple different perspec-
tives. The first perspective centers on the agent’s perception of risk, recognizing that different agents
may exhibit distinct risk-preferences when confronted with similar situations. We acknowledge
that risk is subjective, and an agent’s perception of risk heavily influences their decision-making
process. By examining various risk profiles and preferences, we can gain a deeper understanding
of how individuals assess and respond to uncertain circumstances. The second perspective delves
into the inherent risks within the system itself. As the system operates, it is subject to changes,
potential model misspecifications, and even corrupted input signals. These risks arise externally,
often beyond the direct control of the decision maker. Factors such as environmental fluctuations,
technological disruptions, or unexpected events can introduce uncertainties and impact the reliability
and accuracy of the decision-making process. By comprehensively studying these sources of risk, we
can develop strategies to mitigate their effects and enhance the robustness of the system. Lastly,
the third perspective examines the risks generated by the actions taken within the system. It
acknowledges that certain actions may alter the system’s dynamics and steer it towards states that
are inherently riskier than others. These risks emerge from within the decision-making process
itself, as the consequences of actions cascade and potentially introduce additional uncertainties.
By scrutinizing the impact of various actions on the system’s risk profile, we can identify optimal
decision paths that minimize potential risks or maximize rewards while considering the inherent
uncertainties at play.

This study primarily focuses on investigating the influence of external risks, dynamics, or events
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that occur independently of the agent’s actions on the optimal strategy. We examine both reward
optimization objectives and risk-sensitive objectives. By applying this analysis to forest resource
management, we further explore how the optimal strategy, based on local context and information,
can adapt in the face of hazards impacting the environment at a broader scale.

The presented contribution has two aspects. Firstly, we develop and analyze a mathematical
model of forest growth that incorporates interactions between trees. The novelty of this model lies in
its tree-level operation, as opposed to the traditional stand-level approach, allowing for simulation of
interactions between neighboring trees. Additionally, the model incorporates multiple environmental
hazards with distinct dynamics. We provide a concise investigation into the impact of these external
risks on expertise or policies. Furthermore, we have implemented the model in such a way that
it can be used independently of this study, adhering to the standard programming interface for
reinforcement learning simulated environments.

The second contribution expands upon the forest management case study and proposes a more
comprehensive framework for reinforcement learning that accounts for external hazards. These
hazards are events which occur independently of the agent’s actions and temporarily modify the
model’s dynamics. We delve into the application of this framework to stochastic multi-armed bandits,
offering an algorithm tailored to this context and providing initial elements for its analysis. We
conclude by conducting an empirical study to validate our findings and intuitions pertaining to the
further pursuit of the work started here.

2 Related works

2.1 Risk-sensitive approach to agricultural decision-making
This study focuses on analyzing decision-making risks in the context of forest management. Previous
research has examined the optimal management of forest resources, specifically addressing risks
associated with windthrow and storms. Couture et al. [2016] conducted a study on the management
of an uneven-aged forest under the risk of windthrow, utilizing a Markov decision process (MDP)
approach. MDP is a widely-used framework for modeling sequential decision-making problems, where
an agent makes choices in an environment, and the outcomes depend on the current state and chosen
action. At each step, the agent observes the current state, takes an action, receives a reward from
the environment, and transitions to a new state according to a probability distribution dependent
only on the current state and chosen action. The agent’s objective is to identify optimal strategies
that maximize rewards over time. The model proposed by Couture et al. [2016] incorporated risk
aversion and aimed to minimize the expected discounted windthrow costs over time, resulting in
an optimal management strategy tailored to the risk preferences of the forest manager. Couture
et al. [2021] further extended the MDP framework to incorporate multiple objectives in sequential
forest management under risk. They proposed the use of the Markov Decision Process-Pareto
Frontier approach, which allows for the consideration of trade-offs between conflicting objectives.
By constructing a Pareto frontier, they identified a range of optimal management strategies that
strike a balance between risk reduction and economic returns.

Loisel [2014] conducted a study investigating the influence of storm risk on the Faustmann
rotation, a widely employed concept in forestry for determining the optimal period for harvesting
trees. Their research aimed to assess the effect of storm risk on rotation decisions and emphasized
the importance of integrating risk factors into forest management strategies. In a more recent
investigation, Loisel et al. [2022] delved into the role of ambiguity and the value of information in
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forest rotation decisions when faced with storm risk. The authors incorporated decision-making
under uncertainty into the framework of forest rotation modeling and examined how uncertain
information impacts optimal management strategies. Their findings highlighted the significance of
considering both risk and ambiguity in the decision-making processes related to forest management.

In contrast to the aforementioned studies that focus on computing optimal policies for known
models, our study aims to address the challenge of learning within an initially unknown environment
by employing a policy that integrates risk considerations. Furthermore, our specific focus is on a
tree-level modeling approach that incorporates interactions between trees, allowing us to examine the
broader-scale impact of these interactions. To the best of our knowledge, this particular approach
has not been explored in the existing literature.

While the previous references concentrate on forest management, Gautron et al. [2022] addressed
the issue of assisting farmers in identifying optimal crop management strategies. Their study
aimed to develop an effective and risk-aware approach to support decision-making among farmers,
incorporating risk considerations into the decision-making process to optimize crop management
strategies that minimize potential losses and maximize agricultural productivity.

Although this study shares similarities with our research in terms of integrating risk into decision-
making, we adopt a different approach in the context of forest management. Rather than predefining
different planning strategies and considering complex outcome distributions, we allow the agent to
take instantaneous actions at any stage of forest development.

2.2 Risk-sensitive reinforcement learning
Risk-sensitive reinforcement learning (RSRL) is an important area of research, particularly in the
context of agricultural sequential decision making, where a risk-neutral strategy is insufficient. Its
primary objective is to address the tradeoff between optimizing rewards and ensuring safety, as well
as the need for robust decision-making processes.

In our study, we placed emphasis on the modeling of risks and devised a framework that treats
risks as events independent of the agent’s actions. The primary goal of our work is to maximize the
agent’s overall reward, even in the face of unfavorable outcomes resulting from uncertain events or
environmental hazards. This concept, although related, differs from the conventional notion of risk
as applied in risk-sensitive reinforcement learning. Specifically, risk-sensitive reinforcement learning
typically considers risk as an inherent characteristic of decision-making in a stochastic environment,
as opposed to the realization of an undesirable random event as we discuss in this study.

Over the years, multiple approaches to RSRL have been explored. For a comprehensive survey
of the field, refer to Garcıa and Fernández [2015]. Additionally, Tan et al. [2022] provide a more
specific survey on applications of risk-sensitive multi-armed bandit problems, which we will focus on
in the second part of our study.

In this section, we will present an approach to risk-sensitive reinforcement learning (RSRL) that
revolves around optimizing risk measures. Although not directly included in the current study,
this approach holds potential for future extensions of our work, particularly when incorporating a
risk-averse component and accounting for user preferences during the learning process.

In risk-sensitive reinforcement learning, one common strategy is to modify the objective function
to optimize a risk measure associated with the distribution of rewards. Various risk measures have
been explored in the literature, including variance, VaR (Value at Risk), and CVaR (Conditional
Value at Risk).

VaR (Value at Risk) is a risk measure that quantifies the maximum potential loss within a
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specified confidence level, providing a single value for the worst-case loss. In contrast, CVaR
(Conditional Value at Risk) expands on VaR by taking into account average or expected losses
beyond the VaR threshold. This comprehensive measure considers the severity of extreme events or
unfavorable scenarios, offering a more complete understanding of potential extreme losses.

Several studies have incorporated the CVaR risk-adverse criterion [Rockafellar et al., 2000] as
a modification of the objective in the Markov decision problem setting [Tamar et al., 2015, Chow
et al., 2015] or the multi-armed bandit setting [Baudry et al., 2021]. Furthermore, some studies have
explored a broader range of coherent risk measures, with CVaR being one such measure [Maillard,
2013, Saux and Maillard, 2023, Mihatsch and Neuneier, 2002].

One challenge in optimizing risk measures is that they are defined with respect to the distribution
of rewards. In contrast, in average/total reward optimization settings, it is often sufficient to estimate
the mean reward of each arm without considering the entire distribution.

The risk-sensitive approach, while beneficial in quantifying and managing risks, does come with
certain drawbacks. Firstly, it is important to note that the objective policy cannot generally be
risk-averse and simultaneously achieve optimal reward. There is a trade-off between risk aversion
and maximizing rewards. Additionally, the introduction of risk-sensitive objectives also impacts
the learning phase of the algorithm. In general, a learner needs to explore extensively to ensure
that it does not miss out on potentially higher rewards. However, such exploration carries inherent
risks, which should be minimized in a risk-sensitive setting. For a study on this phenomenon in the
context of multi-armed bandits, please refer to Galichet et al. [2013].

Numerous other techniques aimed at incorporating risk-aversion have been extensively studied
in the literature. Although not specifically addressed in the current study, these techniques share a
common objective of developing safe and robust decision-making strategies. Such approaches would
be particularly valuable in complex environments where the associated risks can lead to significant
costs, as is the case in domains like forest management.

2.3 Related bandit settings
The second part of our work involves developing a reinforcement learning framework that accounts
for external risks. In this study, we mainly focus on its implications in the stochastic multi-armed
bandit setting. See Section 4.2 for an introduction to the multi-armed bandit problem, and Section
4.3 for the modification we introduced to the basic setting in order to include external risks. Our
framework incorporates two types of rewards for each action: a nominal outcome and a hazard
outcome. This approach bears similarities to the work introduced by Basu et al. [2022] in the
context of bandits. The authors focused on the corrupted bandit problem, where unknown reward
distributions in a stochastic multi-armed bandit setting are heavy-tailed and subject to corruption
by a history-independent adversary. However, there are notable differences between the problem we
address and the one studied by Basu et al. [2022]. In our case, our objective is not solely to find
the optimal arm despite the corrupted values. Instead, we strive to identify an arm that effectively
combines both the nominal distribution and the hazard (corrupted) distribution. As our primary
focus is not the robust estimation of rewards, we also consider different assumptions that result in
reward distributions with improved properties. By doing so, we aim to facilitate the analysis process
and enhance the overall understanding of the problem at hand.

Another desired aspect of our framework is its capability to handle non-stationarity, which
refers to the ability to accommodate changes in problem parameters over time. This has been a
long-standing challenge in the field of reinforcement learning, and we specifically try to address it
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in the context of the multi-armed bandit setting. Several authors have explored this issue across
different scenarios, presenting various approaches and methodologies to tackle the challenge of
non-stationarity. For instance, Garivier and Moulines [2008] investigated the application of upper-
confidence bound (UCB) policies to non-stationary bandit problems with abrupt changes Garivier
and Moulines [2008]. A main aspect of their proposed method is to allow the algorithm to forget
old observations and continuously seek for new ones in order to keep track of the changes of the
model. Slivkins (2008) addressed the Brownian restless bandit problem, where reward distributions
evolve continuously over time following a Brownian motion, with small changes occurring from one
time step to another Slivkins and Upfal [2008]. The focus was on adapting bandit policies to handle
this continuous evolution of reward distributions.

In our specific setting, we consider rewards that originate from either a nominal distribution or a
"hazard" distribution, with only the probability of sampling from each distribution changing over
time. This characteristic allows us to develop estimates for each arm that remain relevant despite
the non-stationarity of the problem, which would be difficult in the case of the papers described
above.

Other researches in the field has explored the utilization of mixture models, such as the work
conducted by Urteaga and Wiggins [2018]. In their study, the authors utilized Gaussian mixture
models to handle the uncertainty associated with the reward distribution of each arm. This approach
is also sometimes employed in contextual bandits to approximate the reward distribution based on
the available context. However, our proposal here differs slightly in that we model the occurrence
of different events as samples from distinct distributions, effectively sampling from the mixture
distribution that combines them. In our case, the use of a mixture distribution is inherent to the
modeling of risk and not merely a proxy to accommodate the estimation of complex distributions.

3 Tree-level model of forest growth with interactions between
trees

Forest ecosystems are intricate and interconnected systems, characterized by complex interactions
among trees, plants, fungi, and animals. However, our current understanding of these interactions
remains incomplete. The prevailing models used in forest management oversimplify the reality by
disregarding tree interactions, employing discrete representations, and relying on average behaviors.
Moreover, they fail to incorporate localized strategies and nuanced risk dynamics. These limitations
predominantly stem from computational constraints, which hinder our ability to devise precise
management techniques that account for the unique characteristics of individual trees.

To address these issues, our research endeavors to develop a tree-level model that explicitly
considers the interactions between individual trees within a forest. By treating each tree as an
autonomous agent, we aim to elucidate the influence of local interactions on optimal management
strategies. This approach represents a significant step towards bridging the gap between existing
models and the intricate reality of forest ecosystems, thereby facilitating more effective forest
management. However, we acknowledge that this approach is still subject to the same computational
constraints that have constrained previous models. Consequently, we are compelled to limit the
scale of the simulation in terms of the number of trees and, in some cases, the number of policies
under consideration.

Furthermore, we explore the applicability of current techniques in managing collective risks
associated with the global condition of the forest. By considering individual interactions and group
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risks holistically, we enhance the comprehensiveness and practicality of forest management strategies.
In the ensuing sections, we will provide an overview of our tree-level model, explicate the

methodologies employed, and present our preliminary findings. Extensions upon this basic model
are discussed in Section 3.5.

3.1 Presentation of the forest model without environmental risks
Let us consider a forest of n trees which interact with their neighbors. The neighborhood relationship
is described as a graph G with n vertex and in which the edges represent the influence of trees on each
other. Here we assume that G is a simple undirected and unweighted graph, but future studies may
relax these assumptions without much change in the model. The state of the forest at time t is defined
by the height of each of its constituent trees and denoted as the vector st = (s1t , ..., s

n
t , Ht)

⊺ ∈ Rn+1.
We will also later consider an action at chosen by the forest manager. We model the growth of the
forest as a discrete time linear system of the form

st+1 = Ast +Bat

.
A is the transition matrix of the system, which depends on the graph G of interactions between

the trees, as well as two additional parameters, α and β. α can be thought of as a growth parameter
that influences the rate of tree growth, while β is an interaction parameter that dictates the strength
of interaction between the trees. In this case, the main interaction manifests as a bonus or malus to
the growth rate based on the relative size of neighboring trees.

Dynamic of the model We denote as Vi the set of vertices connected to i in G. The dynamic
of the system without exterior action will be the following

∀i ∈ [[1, n]], sit+1 = sit + α(Ht − sit) +
β

|Vi|
∑
j∈Vi

(sit − sjt ),

Ht+1 = Ht.

We can observe that, according to this definition, the last coefficient of the state vector remains
constant and is equal to its initial value, denoted as H. In this model, tree growth is facilitated by
the term α(Ht − sit), which promotes the growth of the tree up to an asymptotic value H, while
penalizing excessive growth. The last term, β

|Vi|
∑

j∈Vi(s
i
t − sjt ), represents the interaction between

the trees. Having tall neighbors is detrimental to growth, as they partially block sunlight or absorb
more nutrients from the ground. Conversely, small neighbors allow for rapid growth due to the lack
of strong competitor.

We can now define the corresponding transition matrix A. For all i ∈ [[1, n]] and j ∈ [[1, n]],

Ai,j =


1− α+ β I{Vi ̸= ∅} if i = j

− β
|Vi| if j ∈ Vi

0 otherwise.

In addition ∀j ∈ [[A,n]], Aj,n+1 = α, An+1,j = 0 and An+1,n+1 = 1.
For instance, with two trees in interaction, we obtain
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st+1 =

1− α+ β −β α
−β 1− α+ β α
0 0 1

 st +Bat.

Actions
For each tree described by the model, the agent has the option to either allow it to grow or cut it

down and directly plant a new one. It is possible to cut multiple trees simultaneously. The harvest
action occurs before the growth step and the occurrence of storms.

st+1 = Ast +Bat.

We define B = −A×
(

In
0...0

)
and restrict the actions at ∈ {Ktst|Kt = diag(a1t , ..., ant ), (a1t , ..., ant ) ∈

{0, 1}n}.
With this definition, at step t and for each tree i the agent can either choose ait = 0 to let the

tree grow or ait = 1 to harvest and replant the tree.

Rewards
We proceed to define the reward function for the forest manager, which serves as the primary

objective to optimize. We have chosen to employ a quadratic reward function, as it is a well-studied
objective in the domains of reinforcement learning and optimal control. Furthermore, a quadratic
reward function aligns with the rationale of studying rewards proportional selling price of the lumber,
as it directly corresponds to the basal area of the tree, which determines the selling price of the
lumber. Specifically, we consider a quadratic reward function at time t of the following form:

rt = s⊺tQst + a⊺tRat.

Here, a⊺tRat corresponds to receiving a reward that is quadratic in the size of the harvested trees.
The first term, s⊺tQst, although not utilized in the experiments, can be used to model the value
associated with other ecosystem services that are dependent on having a mature forest, such as
carbon storage, biodiversity, or recreational purposes.

Simulation of forest growth without intervention from the forest manager
The growth of trees follows a natural pattern characterized by an initial fast growth phase, which

gradually slows down over time, eventually reaching an asymptotic value denoted as H. This growth
process is influenced by the presence of neighboring trees. Specifically, smaller trees experience a
reduced growth rate when surrounded by taller neighbors. This phenomenon can be attributed to
taller trees obstructing the direct access of sunlight for smaller trees, while benefiting from their
own unimpeded access to light. Previous studies have shown that the growth of various tree species
is positively correlated with light availability [Rüger et al., 2011].

The specific relationship between trees can lead to convergence towards different asymptotic
heights. For instance, Figure 1 illustrates the final heights in a forest where trees are arranged in a
grid-like pattern and only interact with their four closest neighbors. In this case, the system stabilizes
with trees alternating between two distinct sizes, as taller trees impede the further growth of smaller
ones. We should note that the positions of taller and smaller trees, as well as the asymptotic heights
of both groups, depend on the initial conditions. Additionally, different relationships between trees
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can result in diverse patterns or behaviors for the asymptotic height. As demonstrated in Figure 1,
when trees in a grid pattern interact with their eight nearest neighbors instead of four, the resulting
height pattern is different and the asymptotic values of each group are the same, or very close to
each others.

The system remains stable as long as the spectral radius of the transition matrix is less than or
equal to 1, and the initial values fall within a plausible range (non-negative heights and trees that
are not excessively tall compared to the parameter H). For example, when considering a complete
interaction graph where all trees interact equally with each other, the following conditions must be
satisfied:

0 ⩽ α ⩽ 1

0 ⩽ β ⩽
n− 1

n
α.

Figure 1: Evolution of tree heights and map of heights at the end of the simulation. Top: Interaction with the 4
closest neighboring trees, Bottom: Interaction with the 8 closest neighboring trees

3.2 Comparison of policies on the model without environmental risk
Description of the considered policies

Two expert policies are compared to a third policy obtained through reinforcement learning
using the Proximal Policy Optimization (PPO) algorithm. The first expert policy, referred to as the
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"cutting age policy", involves setting a fixed cutting age for all trees, which represents the number of
steps between planting a tree and harvesting it. There are two versions of this policy: one where all
trees are cut simultaneously when their cutting age is reached, and another where each tree’s cutting
date is offset by a few steps (for implementation details, refer to Section 3.2). It’s worth noting that
the reward obtained using this strategy may depend on the timing of the first cutting of the trees.

The second expert policy considered in the deterministic setting is the "threshold policy." This
policy dictates that a tree should be cut as soon as its height reaches a specified threshold.

For the reinforcement learning approach, an agent is trained using the PPO algorithm introduced
by Schulman et al. [2017]. Following training, it is observed that the policy converges to a periodic
pattern in which some trees are cut early, while others are allowed to grow for a longer period
before being harvested. Figure 3 illustrates the frequency of tree harvests for a grid-aligned forest
with interactions among the four nearest neighbors. The figure depicts an alternating pattern of
frequently harvested trees and trees allowed to grow further before being harvested. This strategy
prioritizes maximizing the overall reward by exploiting the growth potential of larger trees, taking
into account the positive impact of having smaller neighbors on tree growth.

The policies can be categorized into two groups based on their granularity. Stand-level policies
involve applying the same action to all trees within a stand, such as the cutting age policy, where all
trees are harvested simultaneously once the cutting age threshold is reached. Tree-level policies, on
the other hand, take personalized actions for each tree based on its current state and neighborhood.
The policy learned through the PPO algorithm and the threshold policy both fall into the tree-level
category.

Results
Table 1 presents the total rewards achieved by the different policies described earlier. The

parameters for the threshold policy and the cutting age policies are selected to maximize the total
reward (refer to Figure 2). The evolution of the system is deterministic as both the dynamics and
policies are deterministic. However, the initial conditions are randomly selected, resulting in slight
variability in the total rewards. This small variability explains why the error bands are barely visible.

Total reward
Threshold policy 249.61

Cutting age policy 226.88
Cutting age policy (with offset) 243.84

Policy learned using PPO 257.11

Table 1: Comparison of the different policies over 100 simulation steps in the deterministic setting (using the best
parameters)

The experiments were conducted using the parameters α = 0.2, β = 0.1 and H = 20. The total
reward is computed over 100 steps of simulation, which amount to multiple cycles of harvest and
growth for each strategy.

The results show that the policy learned using the PPO algorithm outperforms the expert policies
in the deterministic case. This policy leverages the dynamics of tree interactions to optimize its
total reward. The two cutting age-based policies perform similarly, with a slight advantage observed
for the policy that offsets the cutting of neighboring trees.

10



Figure 2: Optimization of the parameters of the simple policies

Figure 3: PPO cutting frequencies

3.3 Forest model under environmental risks
Modeling environmental hazards

In this study, we introduce the incorporation of risks, which manifest as stochastic tree destruction
events. These events resemble tree cutting actions but occur randomly and are beyond the control
of the forest manager. Importantly, the agent does not receive any additional reward for the fallen
tree when these events occur in the specific model implementation described below. Losing trees in
this manner signifies a net loss for the forest manager.

To model these destructive events, we treat them as if they were actions of a second player by
introducing an additional stochastic term into the model:

st+1 = Ast +Bat + Cbt. (1)

Here, C represents the matrix that defines the behavior of the destructive events, and bt represents
the corresponding actions. The definition of C and the admissible values of bt are similar to that
of matrix B and action at. The key distinction is that the actions taken by the forest manager,
represented by at, must be taken into account since they are assumed to occur before the destruction
of trees by an environmental hazard. Therefore, we include at in the definition of bt.
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C = B = −A×
(

In
0...0

)
bt = Lt(st −

(
In
0...0

)
at).

These definitions allow writing the model dynamics in a simplified manner.

st+1 = A(I − L′
t)(I −K ′

t)st. (2)

where K ′
t =

(
In
0...0

)
Kt is controlled by the agent and L′

t =

(
In
0...0

)
Lt is controlled by the

environment.
The modeling of an environmental hazard primarily revolves around the selection of Lt, which

abides by the same constraints as Kt, the matrix that determines which trees are to be cut by the
agent. In the following paragraphs, we introduce two approaches for defining the random process
that generates Lt to model storms and forest fires, respectively.

Dynamic of storms
We will present a straightforward model of a storm, which occurs randomly and independently of

the agent’s actions. At each time step, there is a predetermined probability denoted as pstorm that
a storm transpires in the forest. During a storm event, each tree has the potential to be individually
destroyed, with a windthrow probability influenced by the heights of its neighboring trees. The
probability distribution is intentionally designed to mimic the effects of wind shielding, although
it should be noted that the model itself may not accurately reflect reality. When a central tree is
surrounded by taller trees, it benefits from protection against windthrows. Conversely, a tall tree
with few or no neighbors is highly susceptible to such risks.

The specific probability distribution takes into account these factors to determine the likelihood
of windthrow for each tree during a storm event.

To complete the general model of risk presented earlier, we define Lt = Y storm
t diag(Z1

t , ..., Z
n
t ),

with Ystorm ∼ B(pstorm) and Zi
t ∼ B(pit), where

pit = exp

−
∑
j∈Vi

st(i)/(HD)

 . (3)

The parameter D represents the destructive power of the storms experienced by the forest. As
D increases, the probability of a tree being damaged during a storm also increases.

In this study, we have chosen to reduce the variability of the storms by fixing the parameters
of the risk model, rather than sampling them from a specific distribution at each time step. This
approach provides a consistent and controlled framework for analyzing the effects of the storms on
the forest.

In this study, we have opted to minimize the variability of storms by fixing the parameters of the
risk model, instead of sampling them from a specific distribution at each time step. This approach
offers a consistent and controlled framework for investigating the influences of storms on the forest.

An interesting expansion of the model would involve permitting both the values of D and pstorm
to vary over time, thus incorporating factors such as climate changes. This would facilitate a more
dynamic depiction of the evolving environmental conditions and their ramifications for the forest.

12



Dynamic of forest fires
Forest fire risk can be modeled similarly to the windthrow risk, where it is treated as the action

of a non-controllable opposing player cutting trees without the agent receiving any reward. However,
the dynamics of tree destruction during a forest fire event are different.

We introduce the variable Lt = Y fire
t diag(Z1

t , ..., Z
n
t ), where Ystorm ∼ B(pstorm) and Zt = F (st).

Here, F is a stochastic process that simulates the propagation of a forest fire and returns a vector
indicating the destroyed trees (1 if the tree is destroyed, otherwise 0).

The fire propagates for a predetermined number of rounds, which is independent of the system’s
time steps (everything occurs within one time step). At each round, we consider every pair of
neighboring trees (i, j). If the tree i is burning, then the tree j catches fire with a probability pi,j
given by

pi,j =
0.5

1 + e(s
i
t−sjt)

.

This model of fire propagation, inspired by the work of Morales et al. [2015], is intentionally
minimalistic, as it includes only variables and parameters relevant to our model of forest, such as
tree heights and the interaction graph. The underlying concept of this definition is to account for
the difference in fire dynamics between shrublands and forests. Since each tree has a chance to catch
fire from each of its burning neighbors at each round, the risk increases if a tree is surrounded by
fire.

3.4 Comparison of policies on the model under environmental risk
Description of the considered policies

Despite the introduction of heightened risks, the previously established policies remain applicable.
However, as the probability of environmental hazards escalates, there is a substantial decrease in
average reward, accompanied by an increased variability in total reward, as illustrated in Figure 4.
Under such circumstances, it becomes crucial to consider these risks when devising policies.

In particular, we consider an additional expert policy that draws inspiration from an existing
strategy employed to combat forest fires, while taking into account the nature of the risks involved.
We modify the standard threshold policy by implementing artificial clearings, effectively partitioning
the forest into multiple distinct blocks. This approach impedes the propagation of forest fires across
these blocks, thereby mitigating the associated risks.

Through the integration of this modified policy, forest managers can strategically create clearings
within the forest, enhancing its resilience against fire incidents and minimizing the potential damage
caused by the spread of fires.

Results
The policies are evaluated in two distinct environments characterized by varying probabilities of

environmental hazards. In the high-risk environment, the occurrence of a forest fire or storm stands
at 20% per time step, whereas the probability diminishes to a mere 1% in the low-risk environment.

The outcomes depicted in Figure 4 employ optimized parameters tailored to each environment,
including the optimal threshold level for threshold-based policies. Despite yielding lower overall
rewards in the low-risk environment, the implementation of clearings to obstruct fires outperforms
the standard threshold policy. Moreover, this approach entails reduced risk as it is less prone to
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generate significantly meager rewards resulting from successive fires that lead to the loss of the
entire forest.

It is worth highlighting that, while both cutting age policies yield similar outcomes in low fire-risk
environments, the stand-level policy—comprising the simultaneous removal of all trees within a
stand—is more susceptible to forest fires in comparison to the policy that assigns distinct cutting
dates to individual trees, thereby creating an unevenly aged forest.

Furthermore, policies acquired through the PPO algorithm exhibit either equivalent performance
to the best expert policy, in terms of average reward and risk, when trained and evaluated in
environments featuring the same frequency of environmental hazards, as depicted on Figure 5. A
policy trained on a forest frequently affected by storms will excel in a similar environment but
will prove largely suboptimal if the probability of storms decreases. The same principle applies to
policies trained in environments where storms are exceedingly rare. To ensure a fair comparison,
only the most favorable version of the learned policy should be juxtaposed with the threshold policy,
given that the threshold parameter is selected to best suit the respective environments in both cases.

Figure 4: Distribution of total rewards for a forest affected by fires (KDE plots obtained from empirical distribution
over 100 runs)
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Figure 5: Distribution of total rewards for a forest affected by storms (KDE plots obtained from empirical
distribution over 100 runs)

3.5 Discussions on the forest model study
The developed model allows for the examination of the effects of external risks on a forest with
interconnected tree interactions, albeit with certain limitations. Nonetheless, it provides valuable
insights into the impact of different policies. One notable observation is that implementing a global
strategy, such as harvesting an entire plot at once, proves to be inefficient in terms of both overall
earnings and the vulnerability of the forest to environmental hazards. Despite being recognized
as problematic, this strategy is still utilized by forest managers due to cost-saving benefits, as it
eliminates the need for individual tree monitoring and the simultaneous management of multiple
stands during a single season. Exploring alternative strategies using models like the one proposed
here has the potential to foster more sustainable and resilient forest management practices.

Furthermore, the study demonstrates the viability of discovering tree-level strategies through
learning techniques like reinforcement learning. However, future investigations should prioritize the
application of more risk-sensitive techniques.

Lastly, the study emphasizes the importance of adapting strategies based on both the actual
level of risk and the risk preferences of the forest manager. As previously demonstrated, policies that
perform well under specific frequencies of environmental hazards may exhibit a substantial decrease
in performance compared to their robust and risk-averse counterparts. A sound forest management
policy should be capable of performing well despite the discrepancies between the model and reality,
which may arise from imperfect modeling or changes in the system dynamics over time.

In future research, it would be worthwhile to investigate variations of the current model that
incorporate additional complexities. One potential direction is to consider a forest composed of
multiple species of trees, each characterized by unique growth dynamics and interactions. This would
provide a more realistic representation of diverse forest ecosystems. Another avenue for exploration
is to incorporate varying degrees of interaction by utilizing a weighted interaction graph, where the
influence of a neighboring tree is stronger when they are in closer proximity. This would capture the
spatial aspect of tree interactions more accurately. Additionally, introducing limitations on visible
information and manageable areas, such as observing or managing only a portion of the forest, could
offer valuable insights into practical forest management scenarios.

Specifically, the latter variation could prove advantageous for studying learning algorithms in
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this environment, as it addresses computational challenges stemming from the exponential growth of
actions relative to the number of trees. Furthermore, to enhance the manageability of the problem
for learning algorithms and facilitate formal study, a discrete model based on the Markov decision
process framework can be considered.

It is worth noting that our implementation1 includes the multi-species forest, area restrictions,
and discrete model. However, further exploration and analysis of these aspects are still pending.

The present case study focuses on the examination of external risks in forest management, which
necessitates modeling environmental hazards as randomly-occurring events that disrupt the normal
dynamics of the environment in a specific manner and for a limited duration. These events transpire
independently of the agent’s actions and alter the state of the forest based on its state immediately
prior to the event. Importantly, the hazard dynamics are not influenced by the historical context
of the forest. This characteristic can be advantageous in terms of adapting the learning process
and policies if the environment undergoes changes. However, as far as our knowledge extends, this
particular type of system has not been explored in the field of reinforcement learning. Therefore, we
propose to delve into this topic in the subsequent section.

4 Reinforcement learning with external risks

4.1 General framework of reinforcement learning with external risks
In order to model the impact of external risks, we introduce a modification to the standard RL
setting with random events that occasionally and temporarily modify the dynamics of the system.
At each time step, in addition to observing the state/context, the agent can also access a forecast
estimating the probability of an event occurring that could disrupt the normal system dynamics.
After the agent selects an action, the system will either evolve following its standard dynamics or, in
the event of a disruptive occurrence, follow alternative dynamics. The agent then receives a reward
and is notified of the event occurrence. Such an event only affects a single time step.

This setting allows for modeling environmental hazards. Let us consider the task of growing
crops in a field that can be affected by storms. At each step, the manager receives a weather forecast
for the next few weeks and can decide what strategy to adopt based on the current state of the field
to minimize losses in the event of a violent storm. The manager can choose to take more drastic
preventive actions as the probability of experiencing a storm increases, in order to balance the cost
of taking suboptimal actions with the risk of loss due to the external event. The occurrence of
a "storm" event happens independently of the actual state of the field, but the outcome of the
storm can vary depending on the type of crops that were harvested and those that remained. On
larger time scales, one could consider a hazard occurrence model based on both a global trend (e.g.,
global warming) and seasonal effects (predictions for each month based on previous years) and plan
accordingly. Designing a sound strategy becomes more manageable as the normal dynamics and
the dynamics associated with extreme events are learned separately and independently. Therefore,
if the occurrences of such events increase or decrease, one can combine the two models differently
without having to learn the entire model again.

In this preliminary study, our primary focus will be on investigating how this problem can be
mapped to learning optimal actions within the context of stochastic multi-armed bandits with
external risks.

1Gym environment in Python, accessible at https://github.com/Thomick/forest-risk-rl
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4.2 Technical background on multi-armed bandits
Stochastic multi-armed bandits present a fundamental challenge in sequential decision-making under
conditions of uncertainty. Within this framework, an agent is faced with a set of options, referred to
as "arms," whose reward distributions are unknown. The agent’s objective is to achieve a balance
between exploring different arms to gather information and exploiting arms that offer higher expected
rewards, aiming to maximize its cumulative reward over time. This problem can be analogized to a
gambler positioned in front of a series of slot machines (arms) characterized by diverse probabilities
of payout. The gambler’s objective is to formulate an optimal strategy to maximize their winnings.

More formally, we define a multi-armed bandit problem involving K arms. In each time step t,
the agent must select an arm a ∈ 1, ...,K. A reward rt is subsequently sampled from the unknown
distribution associated with the selected arm. The agent observes this reward and continues the
process until the trial concludes. The objective is to maximize the expected cumulative reward over
the n steps of the trial.

Let us consider the regret of the algorithm over n steps. The regret serves as a metric that
quantifies the cost associated with employing a specific strategy in comparison to the optimal one.
At each step, we compute the difference between the average reward obtained from the chosen arm
and the optimal arm. The regret is obtained by aggregating these differences, also referred to as
"gaps," throughout the entire trial. This enables the establishment of an objective measure that
evaluates the performance of the algorithm over a specified duration. In the standard multi-armed
bandit setting, the regret can be defined as follows:

Rn =

n∑
t=1

max
a

µa − E

(
n∑

t=1

rt

)
,

where µa is the true average reward of the distribution associated to the arm a.
Multiple strategies have been developed to address the multi-armed bandit problem. In this study,

we will focus on a specific paradigm known as "Optimism in the face of uncertainty." Optimism in
the face of uncertainty is a fundamental concept in reinforcement learning, proposing that an agent
should adopt an optimistic approach when exploring uncertain options in order to gather more
information and potentially discover more rewarding outcomes. A popular algorithm that embodies
this concept is UCB1 (Upper Confidence Bound) [Auer et al., 2002]. UCB1 achieves a balance
between exploration and exploitation by assigning optimistic values to unexplored actions, thereby
encouraging the agent to explore them. As the agent accumulates more information over time,
the level of optimism diminishes, leading to a refined decision-making process based on acquired
knowledge.

The authors establish an optimistic index for each arm, which serves as an upper bound of a
confidence interval for the average reward associated with that arm. This interval represents the
range within which the true average reward of the arm is likely to fall with high probability. The
upper confidence bound for arm i at time t (UCBi(t)), given a confidence parameter δ, can be
defined as follows:

UCBi(t, δ) := µ̂i(t) +

√
2 log(1δ )

Ti(t− 1)
, (4)

where µ̂i(t) represents the average reward estimated by the algorithm at time t, and Ti(t−1) denotes
the number of times arm i has been pulled up to time t− 1. This index ensures that the true average
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reward of arm i is below UCBi(t) with a probability of at least 1− δ. We can now present a variant
of the UCB algorithm for a fixed confidence parameter δ, which differs from the UCB1 algorithm
[Auer et al., 2002] in that it requires predefining the confidence level, typically as a function of the
total number of steps in the trial (horizon), while UCB1 is independent of the horizon.

Algorithm 1 UCB(δ)

Require: Number of arms K, Horizon T
1: for time steps t = 1, . . . , T do
2: Choose action i ∈ argmax

j∈J1,KK
UCBj(t, δ)

3: Observe the reward rt
4: Update the estimates and confidence bounds
5: end for

Given a finite horizon n, we can establish guarantees on the average performance of the algorithm,
as stated in Proposition 1.

Proposition 1 (Regret bound for UCB(δ)). Consider UCB(δ) as shown in Algorithm 1 on a
stochastic k-armed 1-subgaussian bandit problem. For any horizon n, if δ = 1/n2, then

Rn ⩽ 3

k∑
i=1

∆i +
∑

i:∆i>0

16 log(n)

∆i
.

A more comprehensive description of UCB(δ) and the proof for Proposition 1 can be found in
Chapter 7 of the book by Lattimore and Szepesvári titled "Bandit Algorithms" [Lattimore and
Szepesvári, 2020].

4.3 Problem statement: Bandits with external risks
In this section, we extend the conventional multi-armed bandit setting to incorporate external
risks. We consider a multi-armed bandit problem featuring K arms. Each action a ∈ 1, . . . ,K is
associated with two distinct reward distributions, denoted as Pa and Qa. During each round t, the
learner selects an action a ∈ 1, . . . ,K and receives a random reward rt drawn from distribution Pa

with probability 1− pt, or from distribution Qa with probability pt. Prior to choosing an arm, the
learner observes the probability pt and subsequently receives information denoted as ot, indicating
which distribution was actually used along with the associated reward. Specifically, if ot = 0, it
signifies that the reward was drawn from distribution Pa, while ot = 1 implies that it was drawn
from distribution Qa.

In the context of the finite horizon setting, our objective is to optimize the cumulative reward
within a specified time horizon T . Let µa denote the expected value of rewards sampled from
distribution Pa for each action a, and let λa represent the expected value from distribution Qa. In
this setting, we define the regret as follows:

Rn =

n∑
t=1

max
a

((1− pt)µa + ptλa)− E

(
n∑

t=1

rt

)
.
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As an additional assumption, and to adhere to the idea of external risks, we assume that
the probability of an event pt is independent of the agent’s actions prior to time instant t. This
assumption ensures that the event probability remains unaffected by the agent’s choices leading up
to a particular time step. However, it is important to note that in the non-stationary case, further
assumptions may be required, which will be addressed later.

4.4 Study of bandits with stationary event probability
We commence our analysis by considering a scenario in which the probability of selecting from
the "hazard" distributions Qi when pulling arm i remains fixed. In this case, the optimal arm
and the regret incurred by selecting a suboptimal arm do not change over time. Consequently,
we encounter a classical stochastic multi-armed bandit problem, albeit with the distinction that,
contrary to the typical assumptions made regarding the reward distribution (such as boundedness,
upper-boundedness, subgaussianity, identical variances, or straightforward Bernoulli distribution),
we have a mixture of distributions in this setting. For the purpose of our analysis, we will assume
that both Pi and Qi for each arm i are σ-subgaussian, as defined below. It is important to note that,
for the proposed algorithm and the stationary case, we do not require any assumptions regarding
the means of the distributions.

Definition 1 (Subgaussianity). A random variable X is said to be σ-subgaussian if, for all λ ∈ R,
the following inequality holds: E[exp(λX)] ⩽ exp

(
λ2σ2/2

)
.

Subgaussianity is a property that is satisfied by several commonly used distributions, including
Bernoulli, Gaussian, and bounded distributions. This property, in particular, offers a valuable
characteristic that we will exploit to construct an index for our optimism-based algorithm.

Proposition 2 (Hoeffding bound). Suppose that the variables Xi, i = 1, . . . , n are independent, and
Xi has mean µi and sub-Gaussian parameter σi. Then for all t ⩾ 0, we have

P

[
n∑

i=1

(Xi − µi) ⩾ t

]
⩽ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Proposition 2 is a classical property of sums of subgaussian random variable which proof can be
found in [Vershynin, 2018, Theorem 2.6.2] for example.

To address the problem at hand, we present Algorithm 2, denoted as MixUCB (UCB for mixture
distributions), which is based on the principle of optimism in the face of uncertainty just like UCB1.
However, UCB1 is not suitable for online learning in the context of our problem. The presence of a
mixture of subgaussian distributions makes it challenging to handle unknown and varying variances
for each arm’s reward distribution. While previous studies have explored the case of unknown
variances for Gaussian variables [Auer et al., 2002, Cowan et al., 2017], these approaches are not
applicable to our setting since a mixture of Gaussians is not itself Gaussian. Instead, we propose a
modified version of UCB1 that employs a new index tailored for mixtures of subgaussian variables.
This modified algorithm enables separate estimation of the means of the two distributions and
provides convenient bounds for analysis. We believe that this algorithm holds promise even in the
non-stationary case when the risk occurrence probability pt is directly provided to the algorithm.

We denote the number of pull of arm i at step t as Ti(t) and the number of such pulls that
resulted in a reward sampled from Pi as Tµ

i (t) (resp Tλ
i (t) for the ones drawn from Qi).
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For each arm i, let us consider an upper confidence bound similar to the one suggested by Auer
et al. [2002].

UCBi(t, δ, p) := (1− p)µ̂i(t) + pλ̂i(t) + βi(t, δ, p), (5)

βi(t, δ, p) :=

√
2 log

(
1

δ

)(
(1− p)2

Tµ
i (t− 1)

+
p2

Tλ
i (t− 1)

)
.

By convention, we will assign βi(t) to be +∞ if either Tµ
i (t − 1) or Tλ

i (t − 1) is zero and their
associated probability is strictly positive (i.e. one of the two distribution was not sampled but has
chances of being sampled).

Algorithm 2 MixUCB

Require: Number of arms K, Horizon T
1: for time steps t = 1, . . . , T do
2: Observe pt
3: Select arm i ∈ argmax

j∈J1,KK
UCBj(t, δ, pt)

4: Play the arm and observe the reward st and the event occurrence indicator ot
5: Update the relevant values
6: end for

Risk-informed case Let’s first consider the case referred to as the risk-informed case, which
corresponds to the setting where the values of pt are provided to the algorithm.

Theorem 1. If ∀t, pt = p ∈ [0, 1] and the value of p is known, then for all horizon n, Algorithm 2
with δ = 1

n3 satisfies

Rn ⩽
∑

i:∆i(p)>0

(
3 +

1

min(p, 1− p)

)
∆i +

48 log(n)

∆i(p)
.

We can observe that Theorem 1 provides a regret bound similar to that of UCB1. The factor
1

min(p,1−p) arises from the need to sample from both distributions of each arm. This is necessary to
avoid significantly underestimating the average reward by solely sampling from the "bad" distribution.
However, considering the motivation behind modeling environments affected by external hazards
and assuming that the nominal distribution Pi for each arm i has a higher mean than the hazard
distribution Qi, a simple modification of the algorithm allows us to replace the aforementioned term
with 1

1−p while maintaining a sufficiently optimistic index. This new term is reasonable as long as
the probability of the hazard is small.

Risk-oblivious case In the case where the reward distributions are assumed to be stationary,
we can estimate the mixture parameter using the history of event occurrences. We propose a
modification of Algorithm 2 to accommodate situations where the agent cannot directly observe the
actual value of pt. Instead, we replace pt with an estimate p̂t throughout the algorithm, given by
the formula:

p̂t =

∑t−1
s=1 os

Ti(t− 1)
.
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This version of the problem can be seen as an intermediate step towards the non-stationary
setting, as the estimates form a sequence that varies around and ultimately converges towards the
actual mixture parameter. The key distinction is that, unlike in the non-stationary setting, the
actual gap between the average rewards of the two arms does not change with the value of p̂t.

Theorem 2. If ∀t, pt = p ∈ [0, 1] and the value of p is unknown, then for all horizon n, Algorithm
2 with estimated event probability and δ = 1

n3 satisfies

lim sup
n→∞

Rn

log3(n)
⩽ C (6)

where C is a constant that depends only on the considered bandit instance and event parameter.

Remark. The omission of the constant is due to its complexity and technical challenges. The proof
implies that making better choices could potentially result in both enhanced constants and improved
asymptotic behavior. The presented result exhibits poly-logarithmic regret, although there is room
for further improvement. While there is no corresponding lower bound, in certain specific cases like
Bernoulli rewards, standard bounds can be applied with a regret on the order of log(n).

4.5 Study of bandits with time-varying event probability
In this section, we will delve into the non-stationary scenario, wherein the mixture parameter,
denoted as pt, varies to reflect changes in the probability of an event disrupting the normal dynamics
or, in the case of bandits, sampling rewards from an alternative distribution. Due to time constraints
during the internship, a comprehensive study of Algorithm 2 in the non-stationary case is lacking.
However, we will outline preliminary components and key insights that pave the way for a complete
analysis.

In contrast to other non-stationary bandit scenarios documented in the literature, where agents
must update their internal estimations and discard old information to adapt to model changes,
the agent in this setup can independently estimate the two distributions, which remains relevant
throughout the trial. Only the mixture parameter undergoes modification, thereby altering the
reward distribution over time. The knowledge of the mixture parameter can either be directly given
to the agent (risk-informed), obtained through an external model (such as weather forecast utilizing
information unavailable to the agent), or estimated dynamically by the agent based on the event
history (risk-oblivious). It is crucial to emphasize that the estimation of the mixture parameter
remains unaffected by the agent’s choices. This is due to the fact that the probability of an event
remains consistent regardless of the chosen action, and the rewards associated with the arm do not
play a role in the estimation of the event probability.

From this point onward, we present the remarks and insights obtained from the preliminary study
of bandit settings with external risks and time-varying event probabilities. Our primary focus is on
the risk-informed scenario, where the agent is equipped with the knowledge of event probabilities.

Arm optimality The optimal action and the difference between the expected rewards of the best
and second-best actions are both contingent on the value of pt. As a result, these quantities can
vary from one round to another. However, it is important to note that each arm can be considered
optimal within at most one specific range of values for pt. Moreover, the optimality gap, which
refers to the difference between the expected rewards of the best and second-best actions, as well as
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the individual gaps of each action are continuous and characterized by piecewise linear behavior. In
addition, it can be easily shown that the gap between each arm and the optimal arm is a convex
function of the event probability pt.

Convergence toward a switching point As previously mentioned, an arm can be optimal
within at most one interval of event probability. As the event probability approaches the edges of
this interval, the gap between the best and second-best arms decreases linearly until it reaches zero.
At this point, a switch occurs between the best and second-best arms.

According to standard sample complexity lower bounds for bandit problems, the number of
samples required to distinguish between two arms is approximately 1

∆2 , where ∆ represents the
difference between the mean rewards of the two arms. Considering Gaussian rewards, the confidence

interval is typically on the order of
√

2 log(n)
t , where n is the total number of time steps.

Let’s consider a specific instance of a bandit with two arms: (µ1, λ1) = (1, 0) and (µ2, λ2) =
(
3
4 ,

1
4

)
.

Additionally, we have the sequence (pt)
n
t=1 =

(
1
2 + 1

t+1

)n
t=1

. In this case, the gap between the

optimal arm and the other arm is ∆(t) = 1
2t . It is worth noting that in this specific problem instance,

the sub-optimality gap decreases linearly with the number of time steps, which is faster than the
shrinking rate of the confidence interval. As a result, there is a possibility of sampling the suboptimal
arm, which remains constant throughout the run, a linear number of times.

We propose a conjecture asserting that in scenarios where the sub-optimality gap, denoted as
∆(t), approaches zero, any reasonable algorithm is expected to sample suboptimal arms a linear
number of times, given that ∆(t) = O

(
1√
t

)
. If this conjecture holds true, it would imply a lower

bound on the regret of at least the order of
∑n

t=1
1√
t
= O(

√
n) for this class of instances. This is

due to the linear increase in the number of suboptimal pulls being counterbalanced by the reduction
in the sub-optimality gap. Notably, this dependence on the horizon would be higher compared to
the case with a stationary event probability, which has a regret order of log(n). It is important
to exercise caution when comparing this conjecture to the lower bound stated by Garivier and
Moulines [2008], which asserts that any policy has an expected regret of at least the order of

√
n.

The comparison should be approached with care since the settings between the two studies are vastly
different, with minimal assumptions on the event probabilities and complementary information in
our case, as opposed to abrupt changes in arm reward distributions at unknown time instants and
different assumptions on the distributions in the study of Garivier and Moulines [2008]. Therefore,
there is no indication that the complexity of the two settings should be similar. Further investigation
is necessary to establish an appropriate lower bound for the problem at hand.

To partially support this intuition, we conducted experiments in Section 4.6 specifically with the
proposed algorithm, MixUCB.

Discrepancy between mixture parameter and past history Another challenge that may
arise is the discrepancy between the number of observed samples and the current event probability.
In extreme cases, the probability can abruptly transition from being close to zero at the beginning of
the trial to nearly 1 towards the end. In such situations, the estimation based on a limited number
of samples from the hazard distribution can become highly inaccurate, resulting in a sudden increase
in suboptimal pulls. While MixUCB effectively addresses this issue by adjusting the confidence
interval accordingly, analyzing and establishing a uniform upper bound on the regret for this case can
be complex. Additional assumptions on the variations of the event probability might be required.
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In the analysis of the stationary case, this issue was addressed by noting that the probability of
encountering a large discrepancy is small, assuming the event probability remains constant. This
was achieved by examining the tail probabilities of the random variable that counts the number of
pulls from each distribution of an arm.

Relevant assumptions Based on the previous observations, we recognize the need to introduce
additional assumptions to fully analyze bandit problems with time-varying event probability.

One possible assumption is to limit the rate of change of pt by assuming that the event probability
is Lipschitz continuous with respect to t. While this assumption can help control the discrepancy
between the proportion of samples from each distribution and the current event probability, its
effectiveness is diminished by the fact that we provide the exact event probabilities to the algorithm.
Even in the extreme case described earlier with a sudden change in event probability, the situation
after the abrupt change is similar to the one at the beginning of the run. No information is lost,
and no additional bias is introduced because we do not have an erroneous estimate of the event
probability. Consequently, the situation with a sudden change of event probability from 0 to 1
should result in a regret that is no greater than the sum of the regrets from runs in which the event
probability remains close to 0 or close to 1.

An important concern highlighted earlier is the convergence of the event probability towards the
switching points of the optimal arm. In such cases, algorithms can face difficulties and may result in
a regret of the order of

√
n, where n represents the horizon of the trial. While we have not provided

a formal proof for this claim, it raises a significant concern.
In general, this linear rate of suboptimal pulls can arise whenever there exists a subsequence of

event probabilities that converge towards switching points at a sufficiently fast rate. The specific
conditions leading to these cases need to be further studied and investigated. It is important to
either rule out these scenarios or consider them as a characterization of the complexity of bandit
problems with external risks.

Another interesting approach to studying the problem would be to consider the sequence of
event probabilities as samples from a probability distribution, which can either be stationary or
evolve over time. This perspective would allow us to define an average regret with respect to the
distribution of event probabilities. It is likely that similar issues as those described earlier, such as
convergence towards switching points and the linear rate of suboptimal pulls, would still arise in
this framework. A careful analysis might shed further light on the necessary assumptions regarding
the distribution of the event probability parameter.
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4.6 Experimental results
In this section, we present the performance evaluation of the algorithms under study2. The algorithms
being compared are as follows:

• The proposed algorithm for this scenario is called MixUCB (Algorithm 2).

• The baseline algorithm is UCB1 [Auer et al., 2002]. We have arbitrarily chosen to use UCB1
instead of UCB(δ), which only differs slightly in the definition of the index but yields similar
empirical results in the finite horizon setting.

• The version of MixUCB with probability estimation is designed for the risk-oblivious case, as
discussed in Section 4.4. In this version, the agent is not informed about the probability of
occurrence of an event. This adaptation is only suitable when the event probability remains
constant. It allows for a fairer comparison with UCB1, as it does not receive the additional
information of the probability. However, the agent can still observe from which distribution
the arm’s reward was sampled.

• The risk-informed ε-greedy algorithm is an adaptation of the standard ε-greedy algorithm.
It estimates the average rewards of each arm by computing the empirical average of each
distribution and combines them according to the provided probability of event pt. Then,
it selects the arm with the highest estimate with probability 1 − ε, or a random arm with
probability ε.

• The OFUL algorithm [Abbasi-Yadkori et al., 2011] is an optimism-based algorithm specifically
designed for addressing the stochastic linear bandit problem (for a comprehensive introduction
to the problem and detailed analysis of the OFUL algorithm, please refer to Abbasi-Yadkori
et al. [2011]). We can transform an instance of the problem of stochastic bandits with external
risk into a linear bandit problem, although the common assumptions in the analysis of this
setting, such as additive noise dependent on the chosen action and its context, may not hold
in this case.

The transformation process involves associating a K-armed bandit problem with a K-armed
linear bandit problem, where the contexts have a dimension of 2K. At each time step, if the
event probability is denoted as pt, the context of arm i is represented by a 2K-dimensional
vector with zeros in all coefficients except at positions 2i and 2i+ 1, which are respectively
assigned to pt and 1− pt. This transformation enables a comparison between our proposed
algorithm, MixUCB, and another optimism-based algorithm that can utilize knowledge of the
event probability. This becomes particularly significant when the event probabilities vary over
time.

Please note that both UCB1 and "MixUCB with probability estimation" are not well-suited for
time-varying environments. In future studies, it is recommended to conduct a more comprehensive
empirical comparison with algorithms specifically designed for non-stationary environments, such
as those proposed by Galichet et al. [2013] or Slivkins and Upfal [2008]. However, it should be
acknowledged that existing techniques may not be directly applicable to the conditions presented in
the current experiments.

2The code for these experiments can be found at https://github.com/Thomick/bandit-external-risks
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In this empirical study, we examine a specific instance of a bandit problem with external risk. It
involves a 4-armed bandit with Gaussian reward distributions with a variance of 1. Notably, for each
arm i, we have µi < λi, reflecting the concept of "nominal distribution vs hazard distribution." The
intervals of the form [λi, µi] represent the possible mean rewards for arm i corresponding to different
event probabilities. These intervals are visualized in Figure 6. The selection of these intervals ensures
that each arm is optimal for a specific value of the event probability p. The optimality intervals of
the arms are determined by the zeros of the suboptimality gap as a function of p, which represents
the difference between the best and second-best arms. The variations of this suboptimality gap with
respect to the event probability are depicted in Figure 6. While the suboptimality gap can exhibit
more complex variations in general, it is guaranteed to be piecewise linear.

Figure 6: Illustration of the instance of bandit used for experiments. Left: Interval of average reward for each arm
when the event probability varies between 0 and 1. Right: Suboptimality gap (average difference between the best
and the second-best arm) as a function of the event probability

All experiments were repeated 50 times, and the plots depict the average cumulative rewards,
while the error bands represent the standard error of the estimated average cumulative regret. The
horizon was set to 10,000, except for the stationary case with p = 0.4, where the results appeared
inconclusive. Consequently, the horizon was extended. The exact reason for this inconclusiveness is
not entirely clear, but it is likely attributed to the narrow suboptimality gap associated with this
specific value of the event probability in the given instance.

Fixed event probability Figure 7 facilitates the comparison of the four algorithms for a specific
value of the event probability, denoted as p. We observe that both versions of MixUCB exhibit
similar performance to UCB1. However, when the value of p approaches zero, the forced exploration
at the beginning of MixUCB becomes apparent and puts the algorithm at a disadvantage compared
to UCB1. It seems that longer experimental runs tend to diminish this gap between the two
algorithms.

Periodic event probability We consider two scenarios: one where the event probability alternates
between 0.25 and 0.75, and another where it linearly varies between 0 and 1 over 1000 time steps
then repeat. The results of these scenarios are presented in Figure 7. It can be observed that
our proposed algorithm, MixUCB, appears to effectively utilize the additional forecast information
regarding the event probability. However, it is important to note that a comparison with algorithms
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specifically designed for time-varying bandits is necessary to draw conclusions about the performance
of MixUCB in this non-stationary event probability case.

Figure 7: Comparison of four algorithms on an instance of bandits with external risks. The difference between
the plots is the considered sequence of event probability (pt)nt=1. Top row: Fixed event probability. Bottom left:
alternance between 0.25 and 0.75. Bottom right: Periodic 1000 steps pattern characterized by a linear increase of
event probability between 0 and 1.

Uniformly sampled event probability To demonstrate an approach mentioned in the previous
section, we conducted a comparison of algorithms within a setting where the event probabilities at
each step are uniformly sampled from the range of 0 to 1. The results are presented in Figure 8.
The sequences of event probabilities remain consistent across all algorithms, but they differ across
consecutive runs. As anticipated, UCB1 and the variant of MixUCB with probability estimation
(which both assume stationary reward distributions exhibit linear regret, while MixUCB displays
what appears to be sublinear regret. However, it is important to note that a natural criticism is
the absence of a meaningful comparison to algorithms designed for non-stationary bandits, which
necessitates further investigation in future studies.

Converging sequence of event probability We then proceed to empirically investigate the
progression of the number of suboptimal pulls when the sequence of event probabilities converges to
an optimal arm switching point. For this purpose, we focus on the two-arm bandit example outlined
in Section 4.5. The key distinction in our study is that we manipulate the convergence rate of the
sequence (pt)nt=1, resulting in different sequences of gaps ∆(t). Figure 8 demonstrates the number of
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Figure 8: Left: Comparison of algorithms in the case where the event probabilities are uniformly sampled between
0 and 1. Right: Evolution of the number of suboptimal pulls throughout a run depending on the convergence rate
toward a switching point.

suboptimal pulls performed throughout the run for various convergence rates. The straight lines in
the figure do not directly indicate that the total number of pulls is linear in the horizon, but rather
that the arms were sampled at a constant rate throughout the runs. Remarkably, we observe that
when the convergence rate surpasses 1√

t
, we start to observe what appears to be a consistent rate of

sampling for the suboptimal arm. In the case of slower convergence rates, the results are not as
straightforward, but we still observe significantly fewer suboptimal samples.

5 Conclusion
The study presents a new mathematical model for forest growth that incorporates interactions
between individual trees, as well as multiple environmental hazards with distinct dynamics. The
model can function autonomously as a simulated environment for reinforcement learning, adhering
to standard programming interfaces. The findings highlight the limitations of implementing a global
strategy and underscore the necessity for more sustainable and resilient forest management practices.
The study demonstrates the feasibility of uncovering tree-level strategies through reinforcement
learning techniques and encourages future investigations into risk-sensitive approaches.

The research emphasizes the significance of adapting strategies based on the actual level of risk
and the risk preferences of forest managers. Policies that perform well under specific frequencies
of environmental hazards may exhibit decreased performance compared to robust and risk-averse
alternatives. A robust forest management policy should demonstrate good performance despite
discrepancies between the model and reality.

Future research directions involve exploring variations of the model that incorporate additional
complexities, such as multiple species with distinct growth dynamics and interactions. Addition-
ally, incorporating weighted interaction graphs based on proximity and imposing limitations on
visible information and manageable areas could provide further insights. These variations address
computational challenges and facilitate the study of learning algorithms in this environment.

In addition, we propose a modification to the standard reinforcement learning setting to model
the impact of external risks. This modification introduces a framework where random events
occasionally and temporarily modify the system’s dynamics. The agent receives a forecast estimating
the probability of such events, enabling preventive actions to minimize losses. The occurrence of
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events happens independently of the actual system state, and an effective strategy can be devised
by combining the normal dynamics with the dynamics during extreme events. The report focuses
on mapping this problem to learning optimal actions within the context of stochastic multi-armed
bandits with external risks and provides elements for the study of an algorithm tailored for this
setting. We provide an analysis of the algorithm in the case where the probability of extreme events
remains constant, and empirically demonstrate promising results in the case in which this probability
changes overtime.

Future work on this topic includes a comprehensive analysis of the algorithm in the non-stationary
case, which is crucial for solving the problems that motivated this framework in the first place. An
extension of the framework to a Markov decision process is a natural progression, allowing events
to also change the transition probabilities of the model. This new case may require considering
longer-term forecasts, enabling the algorithm to take proactive actions. However, the provision
of early forecasts raises the question of forecast uncertainty (forecasts may be less accurate if
provided too far in advance). An additional extension of this work would be to consider mixtures
of more than two distributions, allowing for the modeling of environments affected by multiple
external risks. For example, in a forest environment, one could consider a mixture of distributions
representing the risks of forest fires, storms, and diseases. By incorporating multiple risk factors, the
decision-making process can become more complex and challenging. This extension would provide a
more comprehensive framework for analyzing and optimizing management strategies in environments
with multiple overlapping risks.
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Appendices
A Proof of Theorem 1
Notations :

• νi(p) = (1− p)µi + pλi is the expected reward of arm i given the mixture weight p

• ∆i(p) = maxj νj(p)− νi(p) is the sub-optimality gap of arm i given the mixture weight p

• ν̂i(t, p) is the estimated mean of arm i at time t for the mixture parameter p

• ν̂iui
(p) is the estimated mean of arm i after ui pulls for the mixture parameter p

• Ti(n) is the number of pull on arm i during the n first rounds

• Tµ
iui

(resp. Tµ
iui

) is the number of samples from the distribution with mean µ (resp. λ) after
ui pulls of arm i

Proof. The analysis is adapted from the proof of Theorem 7.1 of Lattimore and Szepesvári [2020].
Without loss of generality, we assume that the first arm is optimal with respect to p, meaning that
ν1(p) = maxj νj(p). In addition, we will assume that 0 < p < 1. In the other case, as explained
during the definition of the algorithm, the term associated to the impossible event is removed, so
the algorithm will be equivalent to UCB(δ).

As in the standard stochastic bandit setting, the regret can be decomposed as follows,

Rn =
∑

i:∆i(p)>0

∆i(p)E[Ti(n)] (7)

We establish the result by bounding Ti(n) for each suboptimal arm i. Throughout the following
analysis, we assume that we have sampled from each distribution of each arm at least once. The
average number of samples required from each arm for this event to occur is less than 1

p + 1
1−p ,

which will be taken into account at the end of the proof.
Let us define a "good" event Gi.

Gi =

{
ν1(p) < min

t∈[n]
UCB1(t, δ, p)

}
∩

ν̂iui
(p) +

√√√√2 log

(
1

δ

)(
(1− p)2

Tµ
iui

+
p2

Tλ
iui

)
< ν1(p)


where ui is a constant to be chosen later

We will show that if Gi occurs then Ti(n) is bounded by ui and the complementary event Gc
i

happens only with low probability. This will allow us to bound E[Ti(n)],

E [Ti(n)] = E [I {Gi}Ti(n)] + E [I {Gc
i}Ti(n)] ⩽ ui + P (Gc

i )n (8)

Assume that Gi holds, let us show by contradiction that Ti(n) ⩽ ui. First suppose that Ti(n) > ui,
if that the case then that means there exists a round t ⩽ n where Ti(t− 1) = ui and the selected
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action is i. By definition of Gi we have the following inequality,

UCBi(t− 1, δ, p) = ν̂i(t− 1, p) +

√
2 log

(
1

δ

)(
(1− p)2

Tµ
i (t− 1)

+
p2

Tλ
i (t− 1)

)

= ν̂iui(p) +

√√√√2 log

(
1

δ

)(
(1− p)2

Tµ
iui

+
p2

Tλ
iui

)
( since Ti(t− 1) = ui)

< ν1(p) ( definition of Gi)

< UCB1(t− 1, δ, p). ( definition of Gi)

However the above inequality contradict the fact that the algorithm selected the arm i since there
exists an arm with a higher index. Therefore, if Gi holds then Ti(n) ⩽ ui.

Hence, there remains to bound the probability of each part of the complementary event Gc
i

Gc
i =

{
ν1(p) ⩾ min

t∈[n]
UCB1(t, δ, p)

}
∪

ν̂iui
(p) +

√√√√2 log

(
1

δ

)(
(1− p)2

Tµ
iui

+
p2

Tλ
iui

)
⩾ ν1(p)

 (9)

The probability of the first part can be upper bounded using the definition of UCB1(t, δ, p) and
a union bound. The last inequality follows from Proposition 2.

P
(
ν1(p) ⩾ min

t∈[n]
UCB1(t, δ, p)

)
⩽ P

(
ν1(p) ⩾ min

s,s′∈[n]
ν̂i(s+s′)(p) +

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

s′

))

⩽ P

 ⋃
s,s′∈[n]

{
ν1(p) ⩾ ν̂i(s+s′)(p) +

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

s′

)}
⩽

∑
s,s′∈[n]

P

({
ν1(p) ⩾ ν̂i(s+s′)(p) +

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

s′

)})

⩽
∑

s,s′∈[n]

δ ⩽ n2δ (10)

As for the second part of Gc
i , we use the formula of total probability to decouple the randomness

introduced by the random choice between the two distributions associated to each arm from the one
of the index computation. We then cut the sum into three parts. The two ends are bounded by the
tail probability of a binomial distribution and the middle term is bound separately.
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P

ν̂iui
(p) +

√√√√2 log

(
1

δ

)(
(1− p)2

Tµ
iui

+
p2

Tλ
iui

)
⩾ ν1(p)


⩽

ui∑
s=0

P

(
ν̂iui

(p) +

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

)
⩾ ν1(p)

)
P
(
Tµ
iui

= s
)

(Total probability)

⩽
ui∑
s=0

P

(
ν̂iui

(p)− νi(p)+ ⩾ ∆i(p)−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

))
P
(
Tµ
iui

= s
)

⩽
vl
i∑

s=0

P
(
Tµ
iui

= s
)
+

ui−vr
i −1∑

s=vl
i+1

P

(
ν̂iui(p)− νi(p)+ ⩾ ∆i(p)−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

))

+

ui∑
s=ui−vr

i

P
(
Tµ
iui

= s
)

(11)

where vli and vri are chosen such that for a value ui sufficiently large and for all s such that
vli ⩽ s ⩽ ui − vri we have

∆i(p)−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

)
⩾ c∆i(p) (12)

where c is a constant to be chosen later.
For such a choice of vli and vri and by applying a Chernoff bound to each of the term in the

middle sum of Eq. 11 we obtain

ui−vr
i −1∑

s=vl
i+1

P

(
ν̂iui

(p)− νi(p) ⩾ ∆i(p)−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

))

⩽
ui−vr

i −1∑
s=vl

i+1

P (ν̂iui
(p)− νi(p) ⩾ c∆i(p))

⩽
ui−vr

i −1∑
s=vl

i+1

exp

 −c2∆i(p)
2

2
(

(1−p)2

s + p2

ui−s

)


= (ui − vli − vri − 2)δ
c2

(1−c)2 ⩽ uiδ
c2

(1−c)2 (13)

We identify the two other sums of Eq. 11 as tail probabilities of Binomial distributions and we
bound them by applying Hoeffding inequality.
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vl
i∑

s=0

P
(
Tµ
iui

= s
)
⩽ exp

(
−2ui

(
1− p− vli

ui

)2
)

ui∑
s=ui−vr

i

P
(
Tµ
iui

= s
)
⩽ exp

(
−2ui

(
p− vri

ui

)2
)

It is worth noting that the above sums become null when vli (respectively vri ) equals zero. This is
because we initially assumed that each arm’s distribution was sampled at least once, resulting in
the remaining terms in the sum being zero probabilities.

Now we can choose the value of the constants left behind,

ui =

⌈
4 log(1/δ)

(1− c)2∆2
i

⌉
vli =

⌊
(1− p)ui

2

⌋
vri =

⌊pui

2

⌋
We can verify with this particular choice, inequality 12 holds. Now by putting everything together
we obtain

Ti(p) ⩽
4 log(1/δ)

(1− c)2∆2
i

+ n

(
n2δ +

ui

2
δ

c2

(1−c)2 + δ
2(1−p)2

(1−c)2∆2
i + δ

2p2

(1−c)2∆2
i

)

Choosing arbitrarily c = 1/2 and replacing δ = 1
n3 yield the desired result.

B Proof of Theorem 2
Proof. Without loss of generality, we assume that the first arm is optimal with respect to p, meaning
that ν1(p) = maxj νj(p).

We prove the result by bounding Ti(n) for each suboptimal arm i. Let us define Gi(q) an event
indicating the correct estimation of the parameters after a certain number of pulls, given a mixture
parameter q.

Gi(q) =

{
ν1(q) < min

t∈[n]
UCB1(t, δ, q)

}
∩

ν̂iui
(q) +

√√√√2 log

(
1

δ

)(
(1− q)2

Tµ
iui

+
q2

Tλ
iui

)
< ν1(q)


where ui is a constant to be chosen later
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We start by decomposing Ti(n) using indicator functions.

Ti(n) =

n∑
t=1

1{At = i}1{Gi(p̂t)} (14)

+

n∑
t=1

1{At = i}1{Gc
i (p̂t)}1{|p̂t − p| ⩽ εt} (15)

+

n∑
t=1

1{At = i}1{Gc
i (p̂t)}1{|p̂t − p| > εt} (16)

By linearity, we can now bound the expected value of Ti(n) by the sum of the individual expectation
of 14, 15 and 16.

We can first notice that 14 is less than ui. Indeed, after pulling arm i ui times, {At = i} and
Gi(pt) become incompatible. So E(

∑n
t=1 1{At = i}1{Gi(p̂t)}) ⩽ ui.

Now bounding the expectation of 16, we have :

E(
n∑

t=1

1{At = i}1{Gc
i (p̂t)}1{|p̂t − p| > εt}) ⩽

n∑
t=1

P(|p̂t − p| > εt)

⩽
n∑

t=1

exp(−2tεt) (17)

Finally, it remains to bound 15,

E(
n∑

t=1

1{At = i}1{Gc
i (p̂t)}1{|p̂t − p| ⩽ εt)

⩽
n∑

t=1

P(Gc
i (p̂t) ∧ |p̂t − p| ⩽ εt)

⩽wi +

n∑
t=wi

P(Gc
i (p̂t) ∧ |p̂t − p| ⩽ εt)

⩽wi +

n∑
t=wi

P(ν1(pt) < min
t∈[n]

UCB1(t, δ, pt) ∧ |p̂t − p| ⩽ εt)

+

n∑
t=wi

P

 ν̂iui
(pt) +

√√√√2 log

(
1

δ

)(
(1− pt)2

Tµ
iui

+
p2t
Tλ
iui

)
< ν1(pt) ∧ |p̂t − p| ⩽ εt


(18)

where wi is chosen such that ∀t ⩾ wi,∀q ∈ [p − εt, p + εt], both the following condition are
verified,

∆i(q) ⩾
7∆i(p)

8
(19)
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and

∀s ∈ J1, uiK ,

∣∣∣∣∣
√

2 log

(
1

δ

)(
(1− q)2

s
+

q2

ui − s

)
−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

)∣∣∣∣∣ ⩽ ∆i(p)

8

(20)
We then proceed as in the risk-informed case by defining vli and vri such that for a value ui

sufficiently large and for all s such that vli ⩽ s ⩽ ui − vri we have

∆i(p)−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

)
⩾ c∆i(p) (21)

where c is a constant to be chosen later. By definition of wi, the condition 21 also implies that for
any t ∈ Jwi, nK, if |p̂t − p| ⩽ εt holds, we have

∆i(pt)−

√
2 log

(
1

δ

)(
(1− pt)2

s
+

p2t
ui − s

)
⩾

∆i(p)

8
−

√
2 log

(
1

δ

)(
(1− p)2

s
+

p2

ui − s

)
− ∆i(p)

8

⩾ (c− 1

4
)∆i(p)

We perform the same decomposition in three part as in the proof of 1. The two extreme terms
are identical (they only depend on the chosen vli and vri ) and we will now handle the middle part for
any given t ⩾ wi.

ui−vr
i −1∑

s=vl
i+1

P

ν̂iui
(pt) +

√√√√2 log

(
1

δ

)(
(1− pt)2

Tµ
iui

+
p2t
Tλ
iui

)
< ν1(pt) ∧ p̂t − p| ⩽ εt


⩽

ui−vr
i −1∑

s=vl
i+1

P

(
ν̂iui

(pt)− νi(pt) ⩾ ∆i(pt)−

√
2 log

(
1

δ

)(
(1− pt)2

s
+

p2t
ui − s

))

⩽
ui−vr

i −1∑
s=vl

i+1

P
(
ν̂iui

(pt)− νi(pt) ⩾ (c− 1

4
)∆i(p)

)

⩽
ui−vr

i −1∑
s=vl

i+1

exp

 −(c− 1
4 )

2∆i(p)
2

2
(

(1−pt)2

s +
p2
t

ui−s

)


= (ui − vli − vri − 2)δ
(c− 1

4
)2

(1−c)2

⩽ uiδ
(c− 1

4
)2

(1−c)2 (22)

We now set εt =
√

log(n)
t such that 17 is bounded by 1

n .
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The constants are chosen as in the proof of Theorem 1 :

ui =

⌈
4 log(1/δ)

(1− c)2∆2
i

⌉
vli =

⌊
(1− p)ui

2

⌋
vri =

⌊pui

2

⌋
It can then be shown that condition 19 is verified when

t ⩾
16|µi − λi + λ− µ1|2 log(n)

9∆2
i

while condition 20 holds when

t ⩾
64 log(n) log2(1/δ)

(1− c)2

We chose wi to be the maximum between these two values.
Finally, by assembling the bounds from 17,18 and 22 and replacing the constants we obtain the

announced result of Theorem 2
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