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The Challenge of Open-Ended Evolution

Open-ended evolution: A
fundamental characteristic of
biological evolution

Continuous generation of novelty
and increasing complexity

No predetermined endpoint

Challenging to replicate in artificial
systems

↓
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From Biology to Artificial Life
Natural evolution on Earth:

Billions of years of continuous innovation
From single-celled organisms to complex life and intelligence

Artificial Life (ALife) research aims to:
Recreate open-ended evolution in computational models
Gain insights into fundamental principles of life and evolution
Develop tools for evolutionary biology and astrobiology

Cellular Automata: A powerful tool for ALife
Generate complex behaviors from simple rules
Examples: Conway’s Game of Life, Langton’s self-replicating
loops
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Flow-Lenia
Flow-Lenia demo video presented at the Virtual Creature Contest during

ALife2024 conference: https://youtu.be/sSrHoe-iPiU

Continuous cellular automaton with mass conservation
Enables multi-species simulations
Bridges cellular automata and particle-based systems
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Problem Statement

Goal: Bootstrap an open-ended evolutionary process in
Flow-Lenia

Challenge: Vast parameter space, difficult to explore
effectively. How to detect or quantify open-ended evolution in
this environment?

Proposed Approach:
Define relevant metrics to describe evolutionary dynamics
Use diversity search (IMGEP) to explore the space of
Flow-Lenia’s evolutionary trajectories
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Key Components of Flow-Lenia

Activation of a cell interpreted as
density of matter

Compute a potential map from the
current state

Interpret the gradient of the
potential map as a flow field

Move matter along the flow field
using reintegration tracking

Update local parameter according
to incoming matter
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Parameter Interactions and Mixing Rules in Flow-Lenia

(a) Genewise selection (b) Kinetic-based selection

(c) Average mixing (d) Negotiation rule
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Negotiation Mixing Rule

Complex interactions between different local parameters

Potential new behaviors: improved defense against external
invasions, matter exchange without loss of identity,
specialization for specific local environments

In practice we observed that the negotiation rule displayed
generally more complex patterns and behaviors
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From Flow-Lenia to Systematic Exploration
Flow-Lenia creates a vast, complex parameter space

Challenge: Efficiently discover conditions for open-ended
evolution

Random sampling inefficient for high-dimensional spaces

Solution: Intrinsically Motivated Goal Exploration Processes
(IMGEP)

Why IMGEP?

1 Maximizes coverage of behavior space (diverse evolutionary
dynamics)

2 Efficiently explores high-dimensional parameter spaces with
non-linear interactions between parameters

3 Leverages previous explorations to guide future sampling

Our Approach: Explore diversity of evolutionary dynamics to
bootstrap open-ended evolutionary processes in Flow-Lenia
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IMGEP: Systematic Exploration of Flow-Lenia

Choose
New Goal

Find Closest
Past

Attempt

Mutate
Parameters

Run
Simulation

Save
Reached
Goal

1

2

34

5

IMGEP
Main Loop

Intrinsically Motivated Goal
Exploration Processes

Efficient navigation of vast
parameter spaces

Goals defined by
evolutionary metrics

Iterative discovery process
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Quantifying Open-Ended Evolution

Non-neutral Evolutionary Activity

Captures sustained innovation without predefined fitness
Focuses on adaptive changes in species abundance

Complexity via Video Compression

MP4 file size as proxy for visual complexity
Captures both spatial and temporal patterns

Multi-scale Entropy

Quantifies matter distribution at various scales
Insights into hierarchical organization

Movement via Wasserstein Distance

Measures matter redistribution between states
Captures dynamic aspects independent of local parameters and
update rules
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Non-neutral Evolutionary Activity

A =
∑
i

T∑
t=1

∆i (t)

∆i (t) =

{
(pi (t)− pi (t − 1))2 if pi (t) > pi (t − 1)

0 otherwise

where:

A: Total evolutionary activity

∆i (t): Instantaneous activity of component i at time t

pi (t): Proportion of simulated mass attributed to component
i at time t
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Comparison of Mixing Rules
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IMGEP Results

Outperformed
random exploration

Discovered diverse
dynamics

Rules with higher
evolutionary activity

Lower entropy of the
matter distribution

New combinations of
metrics
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IMGEP vs. Random Search

Algorithm Avg Pairwise Distance Coverage std(EA) std(MP4) std(H7) std(H3)

IMGEP 7.88e-01 1387 3.11e+03 7.76e+05 2.46e-01 5.43e-01
Random Search 4.41e-01 678 1.77e+03 6.55e+05 7.65e-02 3.68e-01

IMGEP consistently outperforms Random Search across all
metrics

Higher coverage and diversity in explored solution space

Greater standard deviation in key metrics indicates wider
range of discovered behaviors
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Evolution of Metrics Over Time

Figure: Evolution of exploration metrics for IMGEP (blue) and Random
Search (orange) over time. 16 / 21
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Interactive Exploration Tool

Figure: http://flowlenia.thomichel.fr

Visualize and interact with all discovered simulations
Select specific dynamics based on metric values
Facilitates in-depth analysis of diverse behaviors
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Diverse Dynamics Discovered by IMGEP

Figure: Wide range of patterns and behaviors discovered by IMGEP
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Future Directions

Investigate impact of initial conditions on evolutionary
trajectories

Develop metrics to better capture temporal and spacial
dynamics of evolution

Use IMGEP to automatically explore environmental conditions
and their effects on evolutionary outcomes

Investigate relationship between visual interest and
quantitative metrics

Extend simulations to study longer-term evolutionary
dynamics

Compare IMGEP with other advanced search techniques (e.g.,
novelty search)
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Conclusion and Q&A

Thank you for your attention

Questions?

Explore Flow-Lenia: http://flowlenia.thomichel.fr
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