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1 Introduction
Denoising is a critical task in image and video processing. Despite significant advancements in
denoising techniques and imaging technology in recent years, particularly with the use of deep
learning [Zhang et al., 2017, 2021, Zamir et al., 2022], new challenges continue to arise. For example,
high-end cameras may still produce noisy images in dim lighting conditions, while high-speed video
cameras may capture frames with low signal-to-noise ratio due to their short exposure times. The
widespread use of cheaper, lower-quality sensors in devices such as mobile phones and surveillance
cameras requires denoising even in well-lit scenes. These challenges are further exacerbated by the
use of low-quality optics in such devices, which is often necessary due to cost and space constraints.
Additionally, images are often processed directly on the device in order to conserve memory and



avoid storing large raw data files. However, this direct processing can affect the noise statistics of
the output data and create complex noise distribution with spatial correlation, which can make the
denoising task more difficult. Furthermore, digital images can also degrade over time, due to lossy
compression when the image is uploaded or saved multiple times. This is why it is essential to have
techniques for generic image restoration.

If we want for deep learning models to perform real image denoising, it is essential for it to
be able to grasp the structure of the image and the noise. The diversity and the complexity of
the degradation of real images makes it difficult to efficiently train such methods. Indeed, the
collection of clean and noisy real images is hard and restrain the diversity of the data (controlled
experiment with few devices), and their generation from synthetic noise is insufficient since the noise
distributions are often unknown or complex to model. Multiple works have been done in order to
address these issues, ranging from more realistic noise generation to learning noise model without
datasets of noisy and clean image pairs .

In this work, we review a state-of-the-art image restoration technique proposed by Wan et al.
[2022] whose goal is to restore degraded old photos using only unrelated sets of degraded photos
and clean photos. We implement a part of the method that handle the denoising of images and
reproduce the results. In addition, we explore some improvements to the model in order to reduce
the artifacts and enhance the visual quality of the output images.

2 Previous works

Classical image denoising
Early works on image denoising are based on assumptions on the noise. One common assumption
is that we can approximate the noisy image as the result of a clean image degraded with additive
white Gaussian noise (AWGN). The properties of the noise are used to design filters that would
remove the noise while preserving the image. For example, DCT denoising [Yu and Sapiro, 2011] is
based on the assumption that the noise is AWGN. The algorithm compute the coefficients of the
image in the DCT basis and noise is removed by applying a threshold on the coefficients. An inverse
transformation allows recovering a denoised image. The threshold is chosen to remove the noise
while preserving the image.

Other works leverage the self-similar structure of the image by assuming that similar patches
are different realization of noises on the same signal. Examples of such techniques are Non-local
means [Buades et al., 2005] or BM3D [Dabov et al., 2007] algorithms. Non-local means consists in
selecting the patches from the image that are most similar to the patch that must be denoised and
averaging the value of each pixel over all the patches. In that case, since the noise distribution is
considered centered and independent for each pixel, the average is an estimate of the true value of
the signal. BM3D algorithm is based on the same idea of using similar patches and push it further by
performing denoising on all these patches at once, as well as using adaptive aggregation techniques
to weight the importance of each patches in the final result. This last method already achieves
impressive results while being relatively computationally inexpensive, which makes it become widely
used.

Another approach is to estimate or learn a probabilistic model associated to the patches and
then try to find the most likely original image given the noisy observation and the model. This idea
can be applied either by estimating a model locally from patches of the same image, as in Non-local
Bayes [Lebrun et al., 2013] or globally by learning a Gaussian mixture model of the patches from a
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dataset of images, as it is the case for the EPLL method proposed by Zoran and Weiss [2011].

Neural network for image denoising
The recent success of deep learning in image processing has led to the development of several neural
networks based methods for image denoising. The first works use convolutional neural networks to
directly learn a mapping between the noisy image and the clean image. The network is trained with
pairs of noisy and clean images. The model is then used to denoise images by applying the mapping
to the noisy image.

Zhang et al. [2017] introduces DnCNN, a convolutional neural network designed to predict the
residual image corresponding to the input (the difference between the noisy input and the clean
underlying signal). This approach, named residual learning, extracts the noise which can then
be subtracted from the noisy image to recover a cleaner one. DnCNN displays superior results
compared the anterior approaches.

These kinds of techniques work well when the noise of the image corresponds to the noise
used to train the network, however it does not generalize well to different types of noise. While a
broader range of noise can be included in the training dataset, synthesizing realistic noise is not
always possible. Self-supervised methods allow bypassing this issue, as they do not require pairs of
clean and noisy images. These techniques train a network on tasks other than denoising in order
to implicitly learn a model of the unknown noise. Noise-to-noise training [Lehtinen et al., 2018]
uses different realizations of the noise for a same scene and asks the network to build a mapping
between them. Noise-to-void [Krull et al., 2019] and noise-to-self[Batson and Royer, 2019] lift the
constraint of a second noisy image by proposing blind spot networks, which implicitly exploit spatial
regularity of the data. However, the performance of these two methods are noticeably lower than
the noise-to-noise or noise-to-clean methods due to the loss of information caused by the blind spots
at inference time. Recent works [Laine et al., 2019, Krull et al., 2020] have improved these results
by incorporating information from the blind spots using Bayesian reasoning. However, these require
knowledge about the noise model which is unavailable in the real noise image denoising setting.

Real noise and blind real image denoising
Deep learning methods are capable of representing complex properties of the image and the noise,
however contrary to classical single image denoising techniques, they require large datasets of pairs
of noisy and clean images. To build such datasets, they often rely on synthetic training data
and particularly synthetic noisy images that can be obtained easily by degrading clean images.
Indeed, creating datasets with pairs of real noisy and clean images may be quite complicated and
time-consuming. Even when it is possible, the noise distribution changes depending on the device
and the processing the image goes through. Plotz and Roth [2017] proposes a dataset of images
with real noisy and clean images obtained from long exposure. A benchmark using this dataset
revealed that deep learning models that were thought to outperform classical methods such that
BM3D were in fact weaker on real noise, which shows the importance of realistic training data for
neural network based techniques.

An approach to overcome this issue is to generate more realistic noise in order to build datasets.
Brooks et al. [2019] proposes to work with more realistic noise by simulating the whole processing
pipeline and denoising directly raw images. Indeed, while the noise of processed image can be very
complex due to the non-linear operations and the spatially correlated noise introduced along the
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process, the noise of raw images is relatively well understood. There are two main sources of noise in
raw images: the shot noise (related to photon arrival statistics) is a Poisson random variable whose
mean is the true intensity of the light received by the sensor, and the read noise (electronic noise
introduced while reading the value from the sensors) which is very close to a centered Gaussian
random variable. Such noise can easily be reproduced and added to the clean raw image in order to
obtain a more realistic noise after reprocessing of the image.

Another approach is to stop relying on noisy/clean image pairs and try to directly learn insights
on the structure of the image and the noise from unpaired clean and noise photos, which are much
easier to obtain. There are two main lines of research to tackle the problem of blind real image
denoising for real noise. The first category [Abdelhamed et al., 2019, Jang et al., 2021, Yue et al.,
2020] proposes to learn to synthesize noise using only example. This noise generator can then be
used to generate noisy/clean pairs of images used to train non-blind classical models. The second
category [Wan et al., 2022, Guo et al., 2021, Soh and Cho, 2021] proposes to model the latent spaces
corresponding to noisy and clean images, and to learn the projection from the first space into the
second. The method studied here is part of this category.

3 Method
The model proposed by Wan et al. [2022] is based on image translation. The goal is to learn a
translation (mapping) between the domain of noisy images and the one of clean images. The novelty
of this method is that it does not require pairs of real noisy and clean images to learn the mapping,
but only unrelated sets of images of both domains. The method considers three domains represented
on Figure 1 : the clean images Y, the noisy images R and the synthetic domain X of clean images
with synthetic degradation. The goal is to leverage the relation between the clean images and the
images with synthetic noise to learn a mapping that will generalize well to the images with real
noise.
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Figure 1: Translation method with three domains (from Wan et al. [2022])

First, the domains are mapped to their respective latent space. We wish for the latent repre-
sentation of the synthetic images ZX and real noisy images ZR to be similar so that the mapping
generalize more easily. The benefit of using latent spaces as an intermediary for the translation
is to work with a more compact and meaningful representation of the image than the pixel space,
resulting in an easier generalization of the model.

To define these latent spaces, we use variational autoencoders (VAE) trained for the reconstruction
task. A VAE is a neural network with two parts, an encoder and a decoder. The encoder projects
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the input image to a probability distribution in a latent space of smaller dimension and the decoder
takes a latent representation (random variable realizing the latent distribution) and reconstruct the
image. This probabilistic formulation, instead of the simpler Autoencoder architecture, allows for a
smoother and regularized latent space, which improve the performance of the decoder when used
for image generation. The networks are jointly trained to reconstruct the input image despite the
bottleneck of the latent space, and during the process the latent representation is refined in order to
retain the most important pieces information of the image.

In the model studied here, a first VAE (named VAE1 below) is used for both real noisy images
and synthetic images, with an encoder denoted as ER,X and a decoder GR,X . An adversarial loss is
added to encourage the latent space of the synthetic images to be close to the latent space of the
real noisy images. Another VAE (later named VAE2) is trained to reconstruct its input image from
the domain of the clean images. The latent spaces of both VAEs constitute the latent spaces of the
clean images ZY and the noisy images ZR ∪ ZX , respectively.

We then train a third network T to map the latent space of the noisy images to the latent
space of the clean images. The full model is represented on figure 2. We use generated couples of
images created from clean images degraded with synthetic noise, compute their respective latent
representation and use them as target and input.
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Figure 2: Architecture of the restoration network (from Wan et al. [2022]). The blue dashed line
represents the processing path of a noisy image at inference time.

The method makes use of adversarial training and perceptual losses at different steps of the
process in order to focus on improving the perceptual quality and to stabilize the training. The
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adversarial training results from the formulation of the model as a generative adversarial network
(GAN)[Goodfellow et al., 2014]. GANs are a type of generative model composed of two networks: a
generator and a discriminator. The training of such network can be seen as a game in which the
discriminator tries to identify if the input image is real (comes from the dataset) or fake (generated
by the other network) while the generator aims at fooling the discriminator. The networks are
trained simultaneously with antagonist goals and, as the accuracy of the discriminator increase,
the realism of the generated image improves. Specifically, the version used in this work is inspired
by LSGAN proposed by Mao et al. [2017] which adopt the mean squared error loss, perform a
more stable training and generate higher quality images than the technique originally introduced by
Goodfellow et al. [2014]. In the context of the image denoising method studied here, the generator
is a VAE, the "real" images are the input images and the "fake" images are the one reconstructed
by the VAE.

3.1 Architecture
The network is composed of three major modules. Two VAEs, onefor the noisy image domain and
one for the clean domain, and a mapping network. In addition, multiple discriminator networks
are used (one for each adversarial loss). The two VAEs share the same architecture but are trained
completely independently with different loss functions as outlined in the next section. The VAE
architecture used here is a simplified implementation that assume that the variance of the latent
variables is 1. The advantages of this specific architecture are that it is easier to implement for
similar results and it is fully convolutional, so it can take as input images of any size and output
an image of the same size. The full model architecture is described in Table 2 (Appendix A). It is
composed of the following building blocks.

1. The Convolution block is composed of a 2D convolution layer followed by an instance normal-
ization layer and an LeakyReLU function.

2. The Deconvolution block is a transposed convolution layer, an instance normalization layer
and a LeakyReLU. This block can be used to obtain a higher resolution image from a low scale
representation. This block is used in the original model but it is replaced by Resize-Convolution
block in the improved version we propose here. The Resize-Convolution block is formed from
a Resize layer using Nearest-Neighbour upsampling, followed by a Convolution block.

3. The Residual Block is composed of two successive Convolution blocks, of which result is added
to the input via a residual connection.

4. The Non-local block allows making use of features from the whole image in a flexible manner
instead of being restricted to the receptive field as in a fully convolutional network. This
property is important in the original model in order to restore severe structural degradation
of the image such that scratches. In order to do so, a degradation mask is used with the
non-local block to restrict the part of the image that can be used. In this work, we focus
our implementation on the denoising part of the model so our Non-local block is simpler and
directly adapted from the non-local neural network with embedded Gaussian introduced by
Wang et al. [2018].
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3.2 Losses and metrics
Each module of the model is trained with a combination of multiple losses. As usual for VAEs, the
encoders are penalized for generating latent distributions that are too far from the prior distribution
(centered Gaussian of variance 1) using KL divergence, which take a simplified form since we assume
unit variance. The quality of the reconstruction generated by each module is evaluated using L1

loss.
The model is trained in an adversarial manner, which demonstrated particularly good results

for image generation in previous works [Goodfellow et al., 2014, Mao et al., 2017]. The adversarial
loss LGAN is computed from the mean squared error (MSE) between the output of a discriminator
network and the target as proposed by Mao et al. [2017], however here we use a more general
multiscale discriminator. To each scale corresponds a discriminator. The generated image is down
scaled by a factor of two between each scale, and the final loss is an average over the losses of each
level.

In addition to these contributions to the loss, a perceptual loss is used to encourage the model
to generate images that are perceptually similar to the input. This concept corresponds to losses
that promote realistic and perceptually pleasing results. Indeed, standard loss terms such that the
L2 distance tends to encourage blurry or distorted images that minimize the loss on average but
are not really satisfying for a human observer. Some perceptual losses and metrics make use of
intermediary features of neural networks (the value outputted by intermediary layers of a network).
The activation of these features represents higher level concepts (complex patterns or objects instead
of single pixel colors), so using these features to compare images may be more relevant as an analogy
to the way humans perceive images. The Learned Perceptual Image Patch Similarity (LPIPS) is a
metric introduced by Zhang et al. [2018] that use a VGG network Simonyan and Zisserman [2014]
pretrained for image classification. The metric takes two images as an input, pass them through
the VGG network and then compute the differences of activation of a few specific layers. These
differences are then combined to produce a metric that should reflect the perceptual dissimilarity
between the two images (smaller LPIPS score means perceptually similar images). This metric is
commonly used to evaluate image restoration models so it is also used here to complement the MSE
metric.

The perceptual loss (denoted LFM,VGG in 1) used in the method studied here is computed using
a pre-trained VGG network Simonyan and Zisserman [2014], specifically the activations of 4 different
layers of the network. The loss is computed as the mean squared error between the intermediary
features of the input image and the ones of the generated image. The loss differs from LPIPS mainly
in the layers used and the aggregation of the difference in activation of each neuron. Similarly, all
the hidden layers of the discriminator D are used to compute what the original authors call the
feature matching loss LFM,D.

The full loss used for the training of VAEs can then be expressed as follows :

LVAE(x) = KL (E (x) ∥N (0, I)) KL-Divergence
+ αEzx∼E(x) [∥G (zx)− x∥1] Reconstruction loss
+ Ezx∼E(x)LGAN(x) Adversarial loss

+
1

2
Ezx∼E(x) (LFM,D(G (zx) , x) + LFM,VGG(G (zx) , x)) Perceptual loss

(1)

Where E (x) is the latent distribution returned by the encoder E for the input x, G (zx) is the image
returned by the decoder G from the latent variable zx and α is a hyperparameter.
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In order to make the latent spaces of the real noisy images and the images with synthetic noise
overlap, a discriminator DR,X trained to classify images of these two categories from their latent
representation is introduced. This produces a new adversarial loss LVAE1,GAN which is added to the
common VAE loss LVAE(x) of VAE1.

Llatent
VAE1,GAN(x) =

{
DR,X (ER,X (x))

2 if x ∈ X
(1−DR,X (ER,X (r)))

2 if x ∈ R (2)

The mapping network is trained by first passing a clean image through VAE2 and use the
latent representation and the reconstructed image as a target, then process a synthetically degraded
version of the clean image with the full denoising network (following the dashed line on Figure 2
through ER,X , T and GY). The loss function LT of the mapping network impose constraint both
on the latent space and the final image. A L1 loss LT ,l1 penalizes the difference between the latent
representations of the images in the domain ZY (output of the mapping network). Similarly to VAE
training, an adversarial loss and a feature matching loss (perceptual loss) are computed using the
final output image of the network. The final mapping loss can be written as

LT (x) = λ1LT ,ℓ1(x, x̄) + LT ,GAN(x) + λ2LFM(x, x̄) (3)

where λ1 and λ2 are hyperparameters, x̄ is the clean image associated to the noisy image x (x is
derived from x̄ by adding synthetic noise).

For the evaluation of the model we use LPIPS metric to measure the perceptual similarity
between to images, as well as the PSNR metric which is commonly used to measure the distortion
of an image after a reconstruction process. This last metric is defined as

PSNR(x, y) = 20 · log10

(
MAX I√
MSE (x, y)

)
where MSE (x, y) is the mean squared error between the images x and y and MAX I the amplitude
of the signal (typically 255 for images with pixels encoded on 8 bit).

3.3 Transposed convolution layer
When using neural networks to generate images, it is common to change the resolution of the
image. For instance in VAEs, the dimension of the input image is generally decreased, so it can
be represented in a low dimensional latent space, this latent representation can then be decoded
to get back a high resolution image. Other networks make use of these downscaling and upscaling
operations in order to exploit the structure of the image at different scales.

These operations can be performed in a variety of ways. For downscaling, strided convolutions
and pooling (average-pooling, max-pooling ...) are often used. For upscaling, it is possible to use
interpolation techniques such as nearest-neighbor interpolation or bilinear interpolation. Another
commonly used layer for upscaling is the transposed convolution layer, also known as deconvolution.

The idea behind a transposed convolution is to use each pixel of the input image to paint a
larger area in the output image based on a kernel. This operation can also be seen as applying
a convolution to an image obtained from the input in which we fill the missing pixel values with
zeros. For a given kernel size, this operation has the same parameters as regular convolution, namely
padding and stride, that will influence the dimension of the upscaled image.
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One problem with transposed convolutions is that, depending on the parameters used, the
number of pixels of the input image responsible for the creation of the new pixels may not be
uniform. This phenomenon is illustrated on Figure 3 for a 1D signal. While it should be possible for
the networks to learn weights that correct this problem, they often have difficulties to completely
compensate this effect. This phenomenon has a visible effect on the generated image, resulting in
checkerboard-like patterns.

Figure 3: Overlap pattern of a transposed convolution on a 1D signal. Kernel size = 3. Stride = 2
(from Odena et al. [2016])

In particular, transposed convolution layers are used in the decoders of both VAEs in the original
model. We can, as expected, observe checkerboard artifacts on the results of the denoising model
as we demonstrate in the experiments (cf. Figure 5). We propose to replace these layers by the
combination of an upsampling layer and a convolution layer, as this association is less prone to
produce undesirable checkerboard effects [Odena et al., 2016].

4 Experiments

4.1 Training
The models used in this study were implemented from scratch based on the model described by Wan
et al. [2022] and the code provided by the authors. We noticed differences between the description
and the actual implementation. The model described by the paper defines the one referred below as
the model without perceptual loss. The main differences are that both VAEs were trained without
the use of a perceptual loss and with a single-scale discriminator. A second model, that we refer to as
the original model, replicates the architecture of the provided implementation. Finally, an improved
model is derived from the original by replacing transposed convolution layers by Resize-Convolution
layers. The training is similar to the one announced in the original paper. We use the ADAM
optimizer with β1 = 0.5 and β2 = 0.999. The learning rate is set to 0.0002. We use randomly
cropped images of size 256× 256 pixels. The parameters of the loss are α = 10,λ1 = 60 and λ2 = 10.

4.2 Dataset
Two training datasets were used in this study. Flickr500 provides 500 clean images for our experiment,
however the results using this dataset did not seem as good as the ones announced by Wan et al.
[2022] for the original model. We think that the reasons that could explain this difference in visual
quality could be the lack of diversity of training examples as well as the aliased aspect of the images,
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which is difficult to reproduce with this architecture and may have penalized the training as well as
the evaluation of the final model.

We then used the PascalVOC dataset for our final evaluations of the model. We observed a
faster training as well as higher score for both PSNR and LPIPS metrics after the training. This
dataset contains more diversity and less altered images, however the overall quality of the pictures
seems inferior to the Flickr500 dataset and all the samples are provided in the JPEG format, which
could make it harder to remove this type of compression artifacts.

The images with synthetic degradation are obtained by applying any combination of the following
transformations in a random order to a clean image from the dataset (either Flickr500 or PascalVOC):

• Gaussian blur with a standard deviation between 1 and 5 and a kernel size between 3 and 7.
This effect is obtained by convolution of the image with a Gaussian kernel.

• Additive white Gaussian noise : An additive noise sampled from a centered Gaussian distribu-
tion of standard deviation between 40 and 100 is added to each pixel independently.

• JPEG compression with a quality factor between 40% and 100%.

• Color jitter : Uniform shift of the values of the pixels in an image.

(a) Input image

(b) Original model (LPIPS = 0.0905, PSNR = 25.11dB)

(c) Without perceptual loss (LPIPS = 0.2662, PSNR = 22.84dB)

(d) Replacing transpose convolution layer by resize-convolution (LPIPS = 0.0964, PSNR = 24.01dB)

Figure 4: Image reconstruction with VAE2 trained on Flickr500 (Figure best seen zoomed).
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Figure 5: Reconstruction results from VAE2 demonstrating checkerboard artifacts (details from left
to right: Input image, Original model results, Without perceptual loss, With Deconvolution blocks
replaced by Resize-Convolution blocks)

4.3 Results
The figure 4 compares the reconstruction results obtained with different variations of VAE2 networks.
We can observe that without perceptual loss during training, the images obtained are smoothed out
and a lot of fine details are lost. In particular, the phenomenon is apparent with the human faces
that lack recognizable features.

Checkerboard artifacts can be observed on the images reconstructed by VAE2 and the images
denoised by the full model, as demonstrated on Figure 5. These artifacts are often visible in originally
flat areas for the two models that use transposed convolutions, but it seems to be reduced by the
introduction of a perceptual loss during training. Replacing that layer with a resizing layer followed
by a standard convolution seems to completely solve this issue. However, we observe a decrease of
accuracy of the reconstruction according to both PSNR and LPIPS scores. Best performances were
achieved with nearest neighbor upscaling and 5× 5 convolutions which slightly increase the number
of parameters of the new model (4× 4 transposed convolution were used for the original model).
Figure 4 displays the results of all the models trained on Flickr500 dataset for comparison. Better
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reconstruction results were achieved using PascalVOC dataset. The PSNR increased to 28.8 dB for
the original model and 27.4 dB for the one without transposed convolutions.

In all our experiments, we observe areas in which the colors are significantly darker than the
original image, generally completely black or with a contrasted checkerboard pattern. The effect is
visible when asking the VAE to perform a reconstruction of an image that is not in the training set
and remains after training the complete model. This kind of artifact is rather rare, however it could
already be observed in the original model as shown on Figure 6. We believe that this effect may be
due to the fact that the VAE is trained on images that are very different from the images that are
used for testing. The removal of the transposed convolution layers seems to improve the results,
however it is still present (but without the periodic checkerboard pattern). We observe a decrease of
the effect with more training. In order to further improve the results, we decided to train the model
on a bigger dataset, which reduced the occurrence of these artifacts as well as sped up the training
(as in better metrics for a given number of iterations) and increased both LPIPS and PSNR scores.
In addition, the denoised images generated by the network differ depending the dataset both in
sharpness of edges and the average color. The difference in results can be observed in Figure ??.

Figure 6: Example of a “black artifact” in the window at the bottom-center of the image (extracted
from Figure 4).

Examples of denoising results are displayed in Figure 7. We compare our results (on the right)
to the one of the original implementation provided by the authors (in the middle). Our version was
trained on PascalVOC dataset to match the original model. We can observe that the checkerboard
effect, which was well visible on the whole denoised photo when zoomed, is completely removed
in our version. However, we can observe that some wavelike patterns appear in the normally flat
background of our result (first row). The origin of this degradation may be either a structural
defect in the original image or the artifacts introduced by JPEG compression of an already noisy
image. Overall, the original model seems to be able to better remove this type of artifacts. One
additional drawback is the presence of the strangely colored areas that correspond to the black
artifacts described above. They seem to already be present in the original model but their occurrence
rate is higher in our model. From our observations during this study we hypothesize that the model
can be further trained in order to reduce this issue, however we are not sure of its true origin.
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Figure 7: Comparison of the denoising results of different models (From left to right: Input image,
original model, Without transposed convolution) (Image best seem zoomed)

4.4 Evaluation without reference
It is difficult to evaluate the model on real noisy images since we do not normally have the
corresponding clean images. We decided to use the method proposed by Talebi and Milanfar [2018]
which makes use of a neural network to predict the quality of an image. It provides a score between
0 and 10 that should be comparable to the scores given by human observers. The advantage of this
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kind of evaluation is that it does not require a reference image, which is often unavailable when
denoising real images. We use the implementation provided by Lennan et al. [2018].

We evaluate the model on a small sample of old photos (two of them are displayed in Figure
4) in order to compare the effect of each method on quality assessment. Two models are offered
with the implementation [Lennan et al., 2018], one for aesthetic assessment and one for technical
assessment. They differ in the data used for the training (the score associated to the images either
refers to aesthetic or technique).

Using the technical assessment model, the average quality of the images does not improve on
average from using our version of the denoising method. However, the assessment of each image does
change after denoising, some improve and some get a lower score. The original method demonstrates
a slight improvement of the technical score.

Using the aesthetic assessment model, the score obtained by the images is clearly improved by
the denoising models. Most images obtain a better score with both method, with an advantage for
our version.

These results, presented in Table 1, could be explained by the data the assessment network were
trained with. The "aesthetic" assessment may be better correlated to the tasks the denoising network
is trying to perform. In this work we put an emphasis on old photo restoration with unknown noise
model, however the results show that, in addition to denoising, the network performs other kinds
of restoration such that debluring and color adjustment, which may have a bigger impact on the
perceived aesthetic quality than on the technical quality.

Technical Aesthetic
Input 5.53 4.70

Original model 5.74 5.02
Without transposed convolution (PascalVOC) 5.52 5.10
Without transposed convolution (Flickr500) 5.54 5.33

Input + SR 5.68 5.30
Original model + SR 5.84 5.49

Without transposed convolution (PascalVOC) + SR 5.67 5.45
Without transposed convolution (Flickr500) + SR 5.60 5.60

Table 1: Average quality assessment score (computed using models from Talebi and Milanfar [2018])

4.5 Combining image restoration and Super-Resolution
We studied the effect of combining the denoising model with a Super-Resolution technique. Real-
ESRGAN is a GAN based architecture for Super-Resolution proposed by Wang et al. [2021] in which
the generator takes an image as input and return an image of higher resolution (up to ×4 higher
with the version we used). The experiment consists in first denoising the photo and then upscaling
it by a factor of 3.5 using the pretrained model provided by the authors and without fine-tuning.
The aesthetic and technical scores are presented in Table 1 and some example images are shown in
Figure 8.

We can observe that the technical scores are marginally increased by this extra step. As for the
aesthetic score, the results are greatly improved, with a maximum reached by combining our model
without Deconvolution block with Real-ESRGAN. Figure 8 illustrate how each model influence the
final result. Our version without transposed convolutions allows to recover more realistic textures
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than the original version or Real-ESRGAN only. We can observe that Super-Resolution amplifies
and hallucinate some of the artifacts present on low resolution images. Finally, Real-ESRGAN alone
provides particularly detailed reconstruction of the faces compared to the model studied here.

Overall, our version of the model combined with Real-ESRGAN provides promising results since
the super resolution network is not well-fitted to specifically remove old photo degradation. However,
in some cases the two network do not interact well with each other, which leads to unrealistic texture
on the high resolution results. This issue may be improved by fine-tuning the Super-Resolution
network with results from our model.

It should be noted that Real-ESRGAN was trained on a different dataset and only with
synthetically degraded images (low resolution noisy images) so the combination does not introduce
weights learned from clean/noisy real image pairs.

5 Conclusion
In this report, we reviewed the model proposed by Wan et al. [2022] for old image restoration. This
model is able to learn image restoration from unrelated set of noisy and clean real images. We
implemented the core part of the method (except scratch restoration and face enhancement) and
we were able to produce results close to those announced in the paper. We were able to identify
and document necessary parts of the implementation that were missing in the paper, such as the
generalized use of perceptual losses and the multi-layer discriminator.

One of the main flaws of the original model is the production of checkerboard-like artifacts on
the images, creating unrealistic periodic patterns that degrade their visual quality. We were able
to address this issue by replacing the transposed convolution layers with resize-convolution blocks.
We nevertheless noted decreased performance of the VAE components of the methods according to
LPIPS and PSNR metric.

We tried to evaluate the denoising without reference using the technique proposed by Talebi and
Milanfar [2018] with mild success. While the aesthetic assessment of the image is clearly improved
by the method, the technical score seems to weakly correlate with the denoising process of the
networks. Finding a relevant metric for image assessment without reference will be an important
challenge for the future development of image generation techniques.

The experiments with the combination of the denoising network studied with a super resolution
network shows satisfying results. The two techniques share some functionalities, but they can still
mutually improve the quality of their output. However, the tasks performed by the networks are
partly redundant so future researches may combine the advantages of both techniques in a single
and more efficient network.

Finally, while the technique proposed by Wan et al. [2022] provides impressive results, it still
relies on the generalization of the network trained from synthetic noisy images. The noise model is
simple, which may make the training and the generalization harder. Including a more realistic noise
model to this technique could be a way to facilitate generalization and further improve the results.
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Appendices
A Architecture of the network

Module Layer Kernel size / stride Output size

Encoder E

Conv 7× 7/1 256× 256× 64
Conv 4× 4/2 128× 128× 64
Conv 4× 4/2 64× 64× 64

ResBlock×4 3× 3/1 64× 64× 64

Decoder G

ResBlock×4 3× 3/1 64× 64× 64
Deconv 4× 4/2 128× 128× 64
Deconv 4× 4/2 256× 256× 64
Conv 7× 7/1 256× 256× 3
Tanh / 256× 256× 3

Discriminator scale 1

Conv 4× 4/2 128× 128× 64
Conv 4× 4/2 64× 64× 128
Conv 4× 4/2 32× 32× 256
Conv 4× 4/1 32× 32× 512
Conv 4× 4/1 32× 32× 1

Discriminator scale 1/2

Conv 4× 4/2 64× 64× 64
Conv 4× 4/2 32× 32× 128
Conv 4× 4/2 16× 16× 256
Conv 4× 4/1 16× 16× 512
Conv 4× 4/1 16× 16× 1

Mapping T

Conv 3× 3/1 64× 64× 128
Conv 3× 3/1 64× 64× 256
Conv 3× 3/1 64× 64× 512

Nonlocal 1× 1/1 64× 64× 512
Resblock×2 3× 3/1 64× 64× 512

ResBlock×6 3× 3/1 64× 64× 512
Conv 3× 3/1 64× 64× 256
Conv 3× 3/1 64× 64× 128
Conv 3× 3/1 64× 64× 64

Table 2: Detailed network structure.
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B Combining old photo denoising and Super-Resolution : Ex-
amples

(a) From left to right: Input image after super resolution, zoom on the first image, Original model + super
resolution, our model + super resolution. Our model decreases the unrealistic periodical pattern of the two
other methods.

(b) From left to right: Input image, denoised with our model, Super resolution without denoising, Super
resolution after denoising. Super resolution alone seems more realistic in that case even if the realistic brick
texture are likely hallucinated

(c) Face reconstruction using different methods (From left to right: Input, Original model, Without transposed
convolution, Downscaled result from Real-ESRGAN)

Figure 8: Combined results of Real-ESRGAN and old photo denoising
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